Dinesh, M. S. and Chidananda Gowda, K. and Nagabhushan, P. (2005) Fuzzy-symbolic analysis for classification of symbolic data. In: International Conference on Pattern Recognition and Machine Intelligence.
Text (Full Text)
Fuzzy-Symbolic Analysis for Classification of Symbolic Data.pdf - Published Version Restricted to Registered users only Download (198kB) | Request a copy |
Abstract
A recent study on symbolic data analysis literature reveals that symbolic distance measures are playing a major role in solving the pattern recognition and analysis problems. After a careful study on the existing symbolic distance measures, we have identified that most of the existing symbolic distance measures either suffer from generalization or do not address object variability. To alleviate these problems we are proposing new generalized Similarity symbolic distance measure. The proposed distance measure is asymmetric, addresses object variability, and obeys partial order. To leverage the advantages of both fuzzy set theory and symbolic data analysis, conventional classification algorithm that works on the principles of fuzzy equivalence relation has been extended to handle Symbolic data. Efficacies of the proposed techniques are validated by conducting several experiments on the well-known assertion type of symbolic data sets with known classification results.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Subjects: | D Physical Science > Computer Science |
Divisions: | Department of > Computer Science |
Depositing User: | Manjula P Library Assistant |
Date Deposited: | 16 Sep 2019 07:32 |
Last Modified: | 12 Jul 2022 05:45 |
URI: | http://eprints.uni-mysore.ac.in/id/eprint/8157 |
Actions (login required)
View Item |