Up a level |

Group by: Item Type | No Grouping

Jump to: Article | Conference or Workshop Item

Number of items: **10**.

Padmavathamma, and Chandrashekara, B. M. and Raghavendra, R. and Krattenthaler, C.
(2008)
*Analytic proof of the partition identity A(5,3,3)(n)=B(5,3,3)(0)(n).*
RAMANUJAN JOURNAL, 15 (1).
pp. 77-86.

Raghavendra, R. and Chandrashekara, B. M. and Padmavathamma,
(2007)
*A Simple Bjective Proof of Generalized Schur’s Theorem.*
Tamsui Oxford Journal of Mathematical Sciences, 23 (1).
pp. 41-47.

Padmavathamma, and Chandrashekara, B. M. and Raghavendra, R.
(2006)
*On some problems of A.K. Agarwal.*
ARS COMBINATORIA, 78.
pp. 65-70.

Padmavathamma, and Chandrashekara, B. M. and Rajeshkanna, M. R.
(2006)
*Bijective proof of the partition identity C2,2(n)=D2,2(n) of M. V. Subbarao.*
South East Asian J. Math. Math. Sci., 4 (2).
pp. 33-44.

Padmavathamma, and Rajesh Kanna, M. R. and Chandrashekara, B. M.
(2006)
*Bijective proof of the partition identity C2,r(n)=D2,r(n) of M. V. Subbarao.*
Far East J. Math. Sci. (FJMS), 23 (3).
pp. 341-354.

Padmavathamma, and Rajesh Kanna, M. R. and Chandrashekara, B. M.
(2006)
*A generalized partition identity.*
South East Asian J. Math. Math. Sci., 5 (1).
pp. 45-49.

Padmavathamma, and Raghavendra, R. and Chandrashekara, B. M.
(2006)
*A new bijective proof of a partition theorem of Ramanujan.*
J. Appl. Math. Anal. Appl., 2 (1).
pp. 45-50.

Padmavathamma, and Chandrashekara, B. M. and Raghavendra, R.
(2005)
*Bijective proof of the new partition identity A⁰4,2,2(n)=B4,2,2(n).*
JP J. Algebra Number Theory Appl., 5 (2).
pp. 247-255.

Raghavendra, P. R. and Chandrashekara, B. M. and Padmavathamma,
(2004)
*A new bijective proof of a partition theorem of K. Alladi.*
DISCRETE MATHEMATICS, 287 (1-3).
pp. 125-128.

Chandrashekara, B. M. and Padmavathamma, and Raghavendra, R.
(2006)
*On a conjecture of Andrews. III.*
In: UNSPECIFIED.