

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

S. M. Malathy Sony, P. Charles, M. N. Ponnuswamy, H. S. Yathirajan and M. Nethaji^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^cDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India

Correspondence e-mail: mnpsy2004@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.064 wR factor = 0.184Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4'-{[2-(But-2-enyl)-4-chloro-5-formyl-1*H*-imidazol-1-yl]methyl}biphenyl-2-carbonitrile

In the title structure, $C_{22}H_{18}ClN_3O$, the dihedral angle between the benzene rings of the biphenyl system is 41.6 (1)°; they are approximately perpendicular to the planar imidazole ring. The crystal structure is stabilized by $C-H\cdots Cl$, $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds and $C-H\cdots \pi$ interactions.

Received 22 November 2004 Accepted 26 November 2004 Online 4 December 2004

Comment

Imidazole is a fundamental building block of many proteins and other biological systems. It also acts as a ligand that will bind readily to a metal ion in aqueous systems. Imidazole-4-acetic acid is a catabolite of histamine and is present in the brain (Prell *et al.*, 1996), and an imidazole succinic acid complex is an active non-steroidal aromatase inhibitor (Schiavo *et al.*, 1988). The title compound, (I), serves as a key intermediate for the preparation of the antihypertensive drug losartan potassium (Griffiths *et al.*, 1999).

As expected, the cyanide group is linear, with angle C14—C19—N20 equal to 176.9 (3)°. Angles C9—C10—C11 of 117.6 (2)° and C14—C13—C18 of 117.1 (2)° are contracted, due to the steric hindrance of the biphenyl system. The but-2-enyl chain is in an extended conformation, as noted from the torsion angles N1—C2—C21—C22 [156.2 (3)°], C2—C21—C22—C23 [—165.5 (5)°] and C21—C22—C23—C24 [178.0 (5)°]. The dihedral angle between the benzene rings of the biphenyl system is 41.6 (1)°; rings C7—C12 and C13—C18 make angles of 73.3 (1) and 85.9 (1)°, respectively, with the plane of the imidazole ring.

The crystal structure of (I) is stabilized by $C-H\cdots Cl$, $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds and $C-H\cdots \pi$ interactions (Table 1 and Fig. 2). The two interactions $C-H\cdots Cl$ and the $C-H\cdots N$ involving atom N3 of the imidazole result

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

in the formation of a two-dimensional network in the bc plane. A C-H··· π interaction exists between C11 and benzene ring C13-C18 at (-x, -y, 1-z), the distance between C11 and the centroid of the ring being 3.983 Å.

Experimental

To a suspension of sodium methoxide (0.03 mol, 1.62 g) in dimethylformamide (DMF, 25 ml) was added a solution of 2-(but-2-enyl)-4-chloro-5-formylimidazole (0.03 mol, 5.655 g) in DMF. The mixture was stirred at 298 K for 30 min, and to this was added dropwise a solution of 4-bromomethyl-2'-cyanobiphenyl (0.025 mol, 6.80 g) in DMF (25 ml). The mixture was stirred at room temperature for 24 h and evaporated to a residue under vacuum. The residue was dissolved in ethyl acetate (70 ml), washed with brine (20 ml), then water (50 ml), dried using Na_2SO_4 and evaporated to yield a crude product; this was purified by column chromatography using a mixture (7:2) of n-hexane and ethyl acetate as eluant to give the title product, which was recrystallized from CCl_4 .

Crystal data

$C_{22}H_{18}CIN_3O$	$D_x = 1.273 \text{ Mg m}^{-3}$
$M_r = 375.84$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 20332
a = 9.080 (6) Å	reflections
b = 22.782 (15) Å	$\theta = 1.8-27.4^{\circ}$
c = 10.055 (7) Å	$\mu = 0.21 \text{ mm}^{-1}$
$\beta = 109.476 \ (10)^{\circ}$	T = 293 (2) K
$V = 1961 (2) \text{ Å}^3$	Rectangular block, colourles
Z = 4	$0.30 \times 0.25 \times 0.22 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	3164 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.022$
ω scans	$\theta_{\rm max} = 27.4^{\circ}$
Absorption correction: none	$h = -11 \rightarrow 11$
20332 measured reflections	$k = -29 \rightarrow 28$
4143 independent reflections	$l = -12 \rightarrow 12$

Refinement

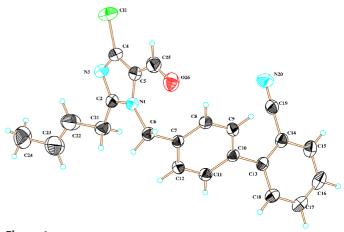

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0786P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.064$	+ 1.127 <i>P</i>]
$wR(F^2) = 0.184$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.083$
4143 reflections	$\Delta \rho_{\text{max}} = 0.64 \text{ e Å}^{-3}$
244 parameters	$\Delta \rho_{\min} = -0.36 \text{ e Å}^{-3}$
H-atom parameters constrained	

Table 1 Hydrogen-bonding geometry (Å, °) for (I).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
C6−H6 <i>B</i> ···O26	0.97	2.40	3.048 (3)	124
C8−H8···O26	0.93	2.71	3.463 (4)	139
$C21-H21A\cdots N20^{i}$	0.97	2.62	3.578 (5)	170
$C6-H6A\cdots N20^{i}$	0.97	2.68	3.625 (4)	165
C15—H15···O26 ⁱⁱ	0.93	2.84	3.421 (4)	122
C17—H17···N3 ⁱⁱⁱ	0.93	2.74	3.532 (4)	144
$C18-H18\cdots O26^{iv}$	0.93	2.76	3.677 (5)	171
C24−H24A···Cl1 ^v	0.96	2.91	3.818 (5)	159
$C11-H11\cdots Cg^{vi}$	0.93	3.27	3.983	135

Symmetry codes: (i) x - 1, y, z; (ii) 1 - x, -y, -z; (iii) -x, $y - \frac{1}{2}$, $-\frac{1}{2} - z$; (iv) -x, -y, -z; (v) x - 1, y, z - 1; (vi) -x, -y, 1 - z. Cg is the centroid of the benzene ring C13–C18.

All H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with $U_{\rm iso}({\rm H})$ = 1.2 or 1.5 times $U_{\rm eq}({\rm parent\ atom})$.

Figure 1 *ZORTEP* (Zsolnai, 1998) plot of the title molecule, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

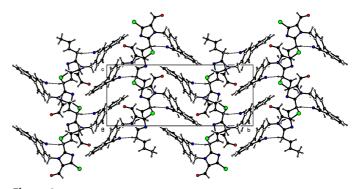


Figure 2 A packing diagram of the crystal structure, viewed down the a axis. Dashed lines represent hydrogen bonds.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003), *ORTEP*-3 (Farrugia, 1997) and *ZORTEP* (Zsolnai, 1998); software used to prepare material for publication: *PLATON*.

SMMS acknowledges the Council of Scientific and Industrial Research for financial support.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Griffiths, G. J., Hauck, M. B., Imwinkelried, R., Kohr, J., Roten, C. A. & Stucky, G. C. (1999). J. Org. Chem. 64, 8084–8086.

Prell, G. D., Douyon, E., Sawyer, W. & Morrishow, A. M. (1996). J. Neurochem. 66, 2153–2155.

Schiavo, D. M., Green, J. D., Triana, V. M., Spaet, R. & Zaidi, I. (1988). Fundam. Appl. Toxicol. 10, 329–331.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen. Germany.

Siemens (1996). SAINT (Version 4) and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Zsolnai, L. (1998). ZORTEP. University of Heidelberg, Germany.