organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

H. S. Yathirajan,^a T. Narasimhamurthy,b B. Nagaraj, P. Nagaraja, B. R. S. Narasegowda^a and Ravindranath S. Rathorec*

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bBioinformatics Center, Indian Institute of Science, Bangalore 560 012, India, and ^cOriental Organization of Molecular and Structural Biology, 204 Agarwal Bhavan, Malleshwaram, Bangalore 560 055, India

Correspondence e-mail: ravindranath_rathore@yahoo.com

Key indicators

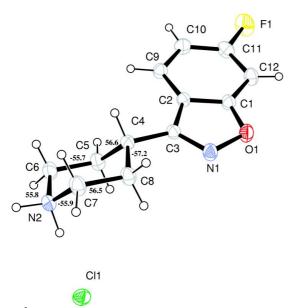
Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.042wR factor = 0.116 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N—H⁺···Cl[−] and C—H···O interactions in 6-fluoro-3-(4-piperidinio)benz[d]isoxazole chloride

Supramolecular assembly of the title compound, C₁₂H₁₄Cl-FN₂O, is primarily governed by $N-H^+\cdots Cl^-$ and $C-H\cdots O$ interactions, and a putative C-H···F interaction. The piperidine ring assumes a chair conformation, with the substituted benzisoxazole ring in an equatorial position.

Received 7 December 2004 Accepted 10 January 2005 Online 22 January 2005


Comment

Non-conventional intermolecular interactions, as compared with the ubiquitous N-H···O, O-H···N and N-H···N hydrogen bonds, have received considerable attention in recent times because of their importance in molecular recognition for structure-aided drug discovery, supramolecular assembly and the design of advanced materials (Desiraju, 2002). They are generally observed in molecules where such types of hydrogen bonding are not feasible. A plethora of non-conventional interactions, namely C- $H \cdot \cdot \cdot O$, $X - H \cdot \cdot \cdot Halogen(Ha)$, $X - H \cdot \cdot \cdot \pi$, $X - Ha \cdot \cdot \cdot \pi$, $\pi - \pi$ and several others, have been recognized and characterized in many different molecular systems (Desiraju & Steiner, 1999). Atomic scale characterization of organic molecules, viable for such types of interactions, is currently a convenient approach to understanding the roles of these interactions in shaping molecular structure, function and assembly. As a part of our continuing interest in non-conventional intermolecular interactions, in this report we discuss the structure and assembly of the title compound, (I), which is an intermediate for the synthesis of the antipsychotic drug risperidone (Kennis & Vandenberk, 1986; Jottier et al., 1992; Umbricht & Kane, 1995).

The bond distances and angles in (I) are in general agreement with those in related crystal structures reported previously (Jottier et al., 1992; Peeters et al., 1993). The maximum out-of-plane deviation from the least-square plane of the fluorobenzisoxazole ring is 0.07 (1) Å for atom C4. Fig.1 illustrates the structure. The piperidine ring assumes a chair conformation. The Cremer & Pople (1975) puckering parameters $(q_2, q_3, \varphi_2 \text{ and } \theta_2)$ and the total puckering amplitude (Q) are 0.025(2) Å, -0.572(2) Å, $8(4)^{\circ}$, $177.5(2)^{\circ}$ and 0.573 (2) Å, respectively. The internal torsion angles of the piperidine ring are indicated in Fig. 1. The asymmetry parameter (Duax et al., 1976) $\Delta C_s(2)$ about the approximate mirror plane passing through N2 and C4 is 0.6°, thus indicating

doi:10.1107/S1600536805000899

© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1ORTEP-3 (Farrugia, 1997) plot of the asymmetric unit of (I). Displacement ellipsoids are drawn at the 30% probability level, and H atoms are shown as small circles of arbitrary radii. The values of the torsion angles of the piperidine ring in the chair form are shown.

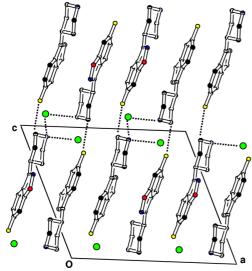


Figure 2 Packing diagram of (I), viewed along the b axis, illustrating intermolecular interactions (dashed lines). H atoms have been omitted.

a marginal deviation from the ideal chair conformation. The attached benzisoxazole ring is in an equatorial position. The torsion angle N1-C3-C4-C5 is -117.4 (2) $^{\circ}$.

In the crystal structure, shown in Figs. 2 and 3, the intermolecular association is mainly determined by $X-H\cdots$ Ha and $C-H\cdots$ O interactions. The $X-H\cdots$ Ha interactions play a predominant role in the crystal packing. The ammonium and chloride ions are interconnected by strong $NH^+\cdots Cl^-$ interactions. The interactions are formed by $N2-H2A\cdots Cl1$ and $N2-H2B\cdots Cl1$ hydrogen bonds (Table 1). The $C9-H9\cdots Ol$ hydrogen bond links the aromatic ring to the isoxazole ring of a molecule translated along the b axis (Fig. 3). Another weak $C-H\cdots$ F contact (Desiraju, 2002) was also observed in the

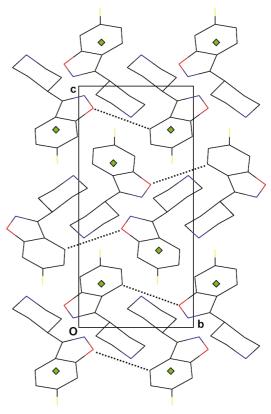


Figure 3 Crystal packing view along the a axis, showing $C-H\cdots O$ interactions (dashed lines). H atoms have been omitted. Color key: C black or gray, N blue, O red, F yellow and Cl green.

crystal structure. The putative $C7-H7A\cdots F1$ contact links the piperidine ring to the benzisoxazole ring.

In summary, non-conventional interactions, $N-H^+\cdots Cl^-$, $C-H\cdots O$ and possibly $C-H\cdots F$, govern the packing mode in (I), illustrating the propensity of formation of such interactions in molecular structures in which conventional hydrogen bonds are not viable.

Experimental

Oxime (1) was treated with K_2CO_3 (0.57 g, 4.13 mmol) in dimethylformamide (10 ml) at room temperature and stirred for 6 h. The product, (2), was hydrolysed using CH₃OH/NaOH at reflux temperature to obtain (3), which was then converted to the hydrochloride salt (I). The overall yield of (I) was 70% and it chars at 560 K. The compound was recrystallized from ethanol.

organic papers

Crystal data

$C_{12}H_{14}FN_2O^+\cdot Cl^-$	$D_x = 1.425 \text{ Mg m}^{-3}$
$M_r = 256.70$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁ /c	Cell parameters from 998 reflections
a = 13.020 (6) Å	$\theta = 7-55^{\circ}$
b = 6.608 (3) Å	$\mu = 0.32 \text{ mm}^{-1}$
c = 15.119 (7) Å	T = 293 (2) K
$\beta = 113.109 \ (7)^{\circ}$	Plate, colorless
$V = 1196.4 (9) \text{ Å}^3$	$0.5 \times 0.2 \times 0.08 \text{ mm}$
Z - A	

Data collection

Bruker SMART CCD area-detector diffractometer	2854 independent reflections 2554 reflections with $I > 2\sigma(I)$
diffractofficter	* /
ω scans	$R_{\rm int} = 0.018$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -16 \rightarrow 17$
$T_{\min} = 0.971, T_{\max} = 0.984$	$k = -8 \rightarrow 8$
13 392 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.068P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	+ 0.2204P]
$wR(F^2) = 0.116$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
2854 reflections	$\Delta \rho_{\text{max}} = 0.26 \text{ e Å}^{-3}$
210 parameters	$\Delta \rho_{\min} = -0.32 \text{ e Å}^{-3}$
All H-atom parameters refined	

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} N2-H2A\cdots Cl1 \\ N2-H2B\cdots Cl1^{i} \\ C7-H7A\cdots F1^{ii} \\ C9-H9\cdots O1^{iii} \end{array} $	0.96 (3)	2.15 (3)	3.106 (2)	178 (2)
	0.96 (3)	2.17 (2)	3.113 (2)	166 (2)
	1.00 (2)	2.38 (2)	3.119 (2)	130 (2)
	0.93 (2)	2.69 (2)	3.475 (2)	142 (2)

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x + 1, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (iii) x, y + 1, z.

H atoms were located in a difference electron-density map and all were refined isotropically [C-H = 0.88 (2)-1.03 (2) Å].

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PARST* (Nardelli, 1995).

We are extremely grateful to Professor T. N. Guru Rao, for providing the CCD facility, and Mr T. Vijay, for help in data collection.

References

Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SAINT-Plus. Version 6.22. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.

Desiraju, G. R. & Steiner, T. (1999). *The Weak Hydrogen Bond in Structural Chemistry and Biology*. New York: Oxford University Press.

Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). In *Topics in Stereochemistry*, edited by E. L. Eliel & N. L. Allinger, Vol. 9, pp. 271–383. New York: InterScience.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Jottier, W. I., De Winter, H. L., Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1992). Acta Cryst. C48, 1827–1830.

Kennis, L. E. J. & Vandenberk, J. (1986). US Patent 4 804 663 (Janssen Pharmaceutica NV, Beerse, BE).

Nardelli, M. J. (1995). J. Appl. Cryst. 28, 659.

Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1698–1700.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). *SHELXL97* and *SHELXS97*. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Umbricht, D. & Kane, J. M. (1995). Schizophr. Bull. 21, 593-606.