(2E)-1-(3-Bromo-2-thienyl)-3-(2,5-dimethoxy-phenyl)prop-2-en-1-one

The molecules of the title compound, C_{15}H_{13}BrO_{3}S, are almost planar and do not show unusual geometric parameters. The crystal packing is characterized by short C—H⋯O contacts.

Comment

Chalcones and their heterocyclic analogues show numerous biological effects (Opletalova & Sedivy, 1999; Dimmock et al., 1999). In addition, with appropriate substituents, chalcones are a class of non-linear optical (NLO) materials (Fichou et al., 1988; Butcher et al., 2006; Harrison et al., 2006).

The crystal structures of 3-hydroxy-1,3-bis(2-thienyl)prop-2-en-1-one (Baxter et al., 1990) and 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one (Ng et al., 2006) have been reported. In continuation of our work on the crystal structures of chalcones (Yathirajan et al., 2006a,b), the present paper reports the crystal structure of the title compound, (I), (Fig. 1).

The bond lengths and angles in (I) can be regarded as normal (Cambridge Structural Database, Version 5.27; Allen, 2002) and all the non-H atoms are close to coplanar (r.m.s. deviation = 0.130 Å). The molecular structure and the crystal packing of (I) are characterized by short C—H⋯O contacts (Table 1).

Experimental

2-Acetyl-3-bromothiophene (10 g, 0.048 mol) in methanol (50 ml) was mixed with 2,5-dimethoxybenzaldehyde (8 g, 0.048 mol) and the mixture was treated with 10 ml of 30% potassium hydroxide solution at 278 K. The reaction mixture was then brought to room temperature and stirred for 4 h. The precipitated solid was filtered and washed with water, dried and recrystallized from acetone to yield crystals of (I) (yield: 83%; m.p.: 375–377 K). Analysis for C_{15}H_{13}BrO_{3}S: found (calculated); C: 50.93 (51.00%); H: 3.63 (3.71%).

Crystal data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>D_{c}</td>
<td>1.624 Mg m^{-3}</td>
</tr>
<tr>
<td>Mo Kα radiation</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>2.99 mm^{-1}</td>
</tr>
<tr>
<td>T</td>
<td>173 (2) K</td>
</tr>
<tr>
<td>V</td>
<td>722.31 (15) Å³</td>
</tr>
<tr>
<td>Crystals</td>
<td>Block, yellow</td>
</tr>
<tr>
<td>Dimensions</td>
<td>0.36 × 0.33 × 0.32 mm</td>
</tr>
</tbody>
</table>

© 2006 International Union of Crystallography
All rights reserved

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 21 August 2006
Accepted 21 August 2006

© 2006 International Union of Crystallography
All rights reserved
Data collection

STOE IPDS II two-circle diffractometer
ω scans
Absorption correction: multi-scan
MULABS (Spek, 2003; Blessing, 1995)

| & |
|---|---|
| T_{min} = 0.362, T_{max} = 0.398 | 4264 measured reflections |
| 2604 independent reflections | 2465 reflections with I > 2σ(I) |
| R_{int} = 0.052 | θ_{max} = 27.1° |

Refinement

Refinement on F²

wR² = 0.181

Absolute structure: Flack (1983), 926 Friedel pairs

Flack parameter: 0.025 (18)

The H atoms were found in a difference map and then placed in idealized positions (C—H = 0.95–0.98 Å) and refined as riding with U_{iso(H)} = 1.2 U_{eq(C)} or 1.5 U_{eq(methyl C)}. The methyl groups were allowed to rotate but not to tip to best fit the electron density. The highest peak in the final difference map is located 0.79 Å from atom Br1 and the deepest hole 0.82 Å from Br1.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

One of the authors (BKS) thanks AICTE, Govt. of India, New Delhi, for financial assistance under the Career Award for Young Teachers (CAYT) scheme.

References