organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2,4-Dichlorophenyl)-*N*-(1,3-thiazol-2-yl)acetamide

Prakash S. Nayak,^a B. Narayana,^a H. S. Yathirajan,^b Jerry P. Jasinski^c* and Ray J. Butcher^d

^aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: jjasinski@keene.edu

Received 24 March 2013; accepted 27 March 2013

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.046; *wR* factor = 0.112; data-to-parameter ratio = 39.0.

In the title compound, $C_{11}H_8Cl_2N_2OS$, the mean plane of the dichlorophenyl ring is twisted by 72.4 (1)° from that of the thiazole ring. In the crystal, molecules are linked *via* pairs of N-H···N hydrogen bonds with an $R_2^2(8)$ graph-set motif and weak C-H···O interactions, forming inversion dimers which stack along the *c*-axis direction.

Related literature

For the structural similarity of *N*-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin *et al.* (2008). For the coordination abilities of amides, see: Wu *et al.* (2008, 2010). For related structures, see: Fun *et al.* (2012*a*,*b*,*c*,*d*,*e*); Butcher *et al.* (2013*a*,*b*). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

a = 5.3262 (2)
b = 10.5083 (4)
c = 10.8096 (4)

$\alpha = 83.900 \ (3)^{\circ}$	
$\beta = 86.301 \ (3)^{\circ}$	
$\gamma = 87.279 \ (4)^{\circ}$	
V = 599.83 (4) Å ³	
Z = 2	

Data collection

Agilent Acalibur (Ruby, Gemini)	
diffractometer	
Absorption correction: multi-scan	
(CrysAlis PRO and CrysAlis	
RED; Agilent, 2012)	
$T_{\min} = 0.873, T_{\max} = 1.000$	

(D 1

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	154 parameters
$wR(F^2) = 0.112$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3}$
6006 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.70 \text{ mm}^{-1}$

 $0.35 \times 0.25 \times 0.12 \text{ mm}$

10769 measured reflections 6006 independent reflections

4329 reflections with $I > 2\sigma(I)$

T = 123 K

 $R_{\rm int} = 0.033$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5 - H5A \cdots O1^{i}$ N1 - H1A \cdots N2^{ii}	0.95 0.88	2.50 2.04	3.3253 (15) 2.9052 (15)	145 168

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 2.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

BN thanks the UGC for financial assistance through the BSR one-time grant for the purchase of chemicals. PSN thanks Mangalore University for research facilities and DST–PURSE financial assistance. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5302).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013a). Acta Cryst. E69, 046–047.
- Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013b). Acta Cryst. E69, 039.
- Fun, H.-K., Ooi, C. W., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, 01312–01313.
- Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, 02679.
- Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012c). Acta Cryst. E68, 02464.
- Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012d). Acta Cryst. E68, 02461.
- Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012*e*). *Acta Cryst.* **E68**, 02565.
- Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.

Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

- Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.
- Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.

supporting information

Acta Cryst. (2013). E**69**, o656–o657 [https://doi.org/10.1107/S1600536813008532]

2-(2,4-Dichlorophenyl)-*N*-(1,3-thiazol-2-yl)acetamide

Prakash S. Nayak, B. Narayana, H. S. Yathirajan, Jerry P. Jasinski and Ray J. Butcher

S1. Comment

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin *et al.*, 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu *et al.*, 2008, 2010). Crystal structures of some acetamide derivatives viz., (2,2-diphenyl-N-(1,3-thiazol-2-yl)acetamide, 2-(4-chlorophenyl)-N-(1,3-thiazol-2-yl)acetamide, 2-(naphthalen-1-yl)-N-(1,3-thiazol-2-yl)acetamide, N-(1,3-thiazol-2-yl)-2-(2,4,6-trimethyl phenyl)acetamide, 2-(2-fluorophenyl)-N-(1,3-thiazol-2-yl)acetamide (Fun *et al.*, 2012*a*,*b*,*c*,*d*,*e*), 2-(2,6-dichlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro- 1H-pyrazol-4-yl)acetamide, 2-(2,4-Dichlorophenyl)-N-(1,5-dimethyl-3-oxo- 2-phenyl-2,3-dihydro- 1H-pyrazol-4-yl)acetamide (Butcher *et al.*, 2013*a*,*b*) have been reported. In view of the importance of amides, we report herein the crystal structure of the title compound, $C_{11}H_8Cl_2N_2OS$, (I).

In (I), the mean plane of the dichlorophenyl ring is twisted by 72.4 (1)° from that of the thiazol ring (Fig. 1). Bond lengths are in normal ranges (Allen *et al.*, 1987) In the crystal, the molecules are linked via pairs of N—H···N hydrogen bonds in a R2,2(8)graph-set motif and weak C—H···O intermolecular interactions forming inversion dimers which stack along the *c* axis (Fig. 2).

S2. Experimental

2,4-Dichlorophenylacetic acid (0.240 g, 1 mmol) and 2-aminothiazole (0.1 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane (Fig. 3). The organic layer was washed with saturated NaHCO₃ solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methanol and acetone mixture (1:1) by the slow evaporation method (M.P.: 493–495 K).

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH₂) or 0.88Å (NH). Isotropic displacement parameters for these atoms were set to 1.18-1.23 (CH, CH₂, NH) times U_{eq} of the parent atom.

Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.

Figure 2

Packing diagram of the title compound viewed along the *a* axis. Dashed lines indicate N—H…N intermolecular hydrogen bonds in an R2,2(8) graph-set motif and weak C—H…O intemolecular interactions forming inversion dimers which stack along the *c* axis.

Figure 3

Reaction scheme.

2-(2,4-Dichlorophenyl)-N-(1,3-thiazol-2-yl)acetamide

Crystal data

 $C_{11}H_8Cl_2N_2OS$ $M_r = 287.15$ Triclinic, *P*1 Hall symbol: -P 1 a = 5.3262 (2) Å b = 10.5083 (4) Å c = 10.8096 (4) Å a = 83.900 (3)° $\beta = 86.301$ (3)° $\gamma = 87.279$ (4)° V = 599.83 (4) Å³

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.5081 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO* and *CrysAlis RED*; Agilent, 2012) Z = 2 F(000) = 292 $D_x = 1.590 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4451 reflections $\theta = 3.8-37.4^{\circ}$ $\mu = 0.70 \text{ mm}^{-1}$ T = 123 KPrism, colorless $0.35 \times 0.25 \times 0.12 \text{ mm}$

 $T_{\min} = 0.873, T_{\max} = 1.000$ 10769 measured reflections 6006 independent reflections 4329 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 37.5^{\circ}, \theta_{min} = 3.8^{\circ}$ $h = -8 \rightarrow 8$ $k = -17 \rightarrow 17$ $l = -18 \rightarrow 11$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.046$ Hydrogen site location: inferred from $wR(F^2) = 0.112$ neighbouring sites S = 1.07H-atom parameters constrained 6006 reflections $w = 1/[\sigma^2(F_0^2) + (0.0402P)^2]$ 154 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.79895 (7)	0.48741 (3)	0.89686 (3)	0.02461 (8)	
C12	0.55890 (9)	0.83944 (4)	0.52220 (4)	0.03766 (11)	
S1	1.04354 (7)	0.01947 (3)	0.74851 (3)	0.02147 (8)	
01	0.79783 (18)	0.25361 (10)	0.71093 (9)	0.0215 (2)	
N1	0.6082 (2)	0.11595 (11)	0.86027 (10)	0.0186 (2)	
H1A	0.4759	0.1039	0.9126	0.022*	
N2	0.7798 (2)	-0.08345 (11)	0.93865 (10)	0.0192 (2)	
C1	0.4325 (2)	0.45348 (12)	0.74111 (11)	0.0171 (2)	
C2	0.6152 (2)	0.53376 (12)	0.77059 (11)	0.0174 (2)	
C3	0.6586 (3)	0.65234 (13)	0.70372 (12)	0.0206 (3)	
H3A	0.7876	0.7045	0.7242	0.025*	
C4	0.5064 (3)	0.69139 (13)	0.60622 (12)	0.0217 (3)	
C5	0.3151 (3)	0.61785 (14)	0.57565 (12)	0.0222 (3)	
H5A	0.2096	0.6478	0.5102	0.027*	
C6	0.2813 (3)	0.49878 (13)	0.64318 (12)	0.0199 (2)	
H6A	0.1522	0.4469	0.6223	0.024*	
C7	0.3992 (2)	0.32251 (13)	0.80963 (12)	0.0191 (2)	
H7A	0.2454	0.2866	0.7829	0.023*	
H7B	0.3745	0.3306	0.9001	0.023*	
C8	0.6212 (2)	0.23051 (12)	0.78742 (11)	0.0166 (2)	
C9	0.7900 (2)	0.01826 (12)	0.85656 (11)	0.0170 (2)	
C10	1.1457 (3)	-0.12670 (14)	0.81987 (13)	0.0237 (3)	
H10A	1.2938	-0.1734	0.7945	0.028*	
C11	0.9844 (3)	-0.16548 (13)	0.91734 (13)	0.0216 (3)	
H11A	1.0106	-0.2441	0.9678	0.026*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02368 (17)	0.02474 (17)	0.02565 (16)	0.00123 (13)	-0.00852 (12)	-0.00047 (12)
Cl2	0.0557 (3)	0.02104 (18)	0.03370 (19)	-0.00763 (18)	-0.00098 (18)	0.01074 (15)
S 1	0.02054 (16)	0.02107 (16)	0.02141 (15)	0.00019 (13)	0.00441 (12)	0.00039 (12)
O1	0.0212 (5)	0.0200 (5)	0.0211 (4)	0.0003 (4)	0.0032 (4)	0.0045 (4)
N1	0.0157 (5)	0.0160 (5)	0.0220 (5)	0.0006 (4)	0.0036 (4)	0.0045 (4)
N2	0.0183 (5)	0.0156 (5)	0.0224 (5)	0.0004 (4)	0.0010 (4)	0.0023 (4)
C1	0.0153 (5)	0.0155 (5)	0.0193 (5)	0.0004 (4)	0.0007 (4)	0.0018 (4)
C2	0.0164 (5)	0.0166 (5)	0.0189 (5)	0.0014 (4)	-0.0016 (4)	-0.0002 (4)
C3	0.0206 (6)	0.0169 (6)	0.0238 (6)	-0.0017 (5)	0.0011 (5)	-0.0008(5)
C4	0.0277 (7)	0.0154 (6)	0.0201 (5)	0.0007 (5)	0.0041 (5)	0.0024 (4)
C5	0.0255 (7)	0.0208 (6)	0.0191 (5)	0.0030 (5)	-0.0022 (5)	0.0023 (5)
C6	0.0180 (6)	0.0197 (6)	0.0218 (5)	-0.0002 (5)	-0.0026 (4)	0.0002 (5)
C7	0.0169 (6)	0.0158 (5)	0.0231 (6)	-0.0005 (5)	0.0009 (4)	0.0036 (4)
C8	0.0178 (6)	0.0148 (5)	0.0170 (5)	-0.0013 (4)	-0.0026 (4)	0.0012 (4)
C9	0.0155 (5)	0.0165 (5)	0.0185 (5)	-0.0015 (4)	0.0003 (4)	0.0002 (4)
C10	0.0206 (6)	0.0205 (6)	0.0291 (6)	0.0041 (5)	0.0020 (5)	-0.0027 (5)

supporting information

C11	0.0218 (6)	0.0166 (6)	0.0256 (6)	0.0008 (5)	-0.0007 (5)	0.0002 (5)
Geom	etric parameters	(Å, °)				
C11—	C2	1.7445 (12)	С2—С3		1.3939 (17)
Cl2—	·C4	1.7412 (13)	C3—C4		1.3866 (19)
S1—0	C10	1.7243 (14)	С3—НЗА		0.9500
S1—0	C9	1.7272 (13)	C4—C5		1.384 (2)
01-0	C8	1.2274 (15)	С5—С6		1.3933 (18)
N1-0	C8	1.3687 (15)	C5—H5A		0.9500
N1-0	С9	1.3794 (17)	C6—H6A		0.9500
N1—I	H1A	0.8800		С7—С8		1.5148 (19)
N2-0	С9	1.3155 (15)	C7—H7A		0.9900
N2-0	C11	1.3799 (18)	С7—Н7В		0.9900
C1	C2	1.3912 (19)	C10-C11		1.3563 (19)
C1	26	1.4009 (17)	C10—H10A		0.9500
C1—0	C7	1.5046 (17)	C11—H11A		0.9500
C10—	-S1—C9	88.73 (6)	C5—C6—H6A		119.1
C8—N	N1—C9	123.92 (11)	C1—C6—H6A		119.1
C8—1	N1—H1A	118.0	,	C1—C7—C8		113.05 (10)
C9—N	N1—H1A	118.0		С1—С7—Н7А		109.0
C9—N	N2—C11	109.73 (11)	С8—С7—Н7А		109.0
C2—0	C1—C6	117.23 (11)	C1—C7—H7B		109.0
C2—0	C1—C7	121.89 (11)	С8—С7—Н7В		109.0
С6—(C1—C7	120.88 (12)	H7A—C7—H7B		107.8
C1-0	С2—С3	122.75 (12)	O1—C8—N1		121.81 (12)
C1-0	C2—C11	119.76 (9)	O1—C8—C7		124.30 (11)
C3—(C2—C11	117.49 (10)	N1—C8—C7		113.88 (10)
C4—0	C3—C2	117.54 (13)	N2-C9-N1		120.68 (11)
C4—0	С3—НЗА	121.2	,	N2-C9-S1		115.46 (10)
C2—0	С3—НЗА	121.2		N1—C9—S1		123.86 (9)
С5—С	C4—C3	122.29 (12)	C11—C10—S1		110.33 (11)
С5—(C4—Cl2	119.82 (10)	C11—C10—H10A		124.8
C3—(C4—Cl2	117.89 (11)	S1—C10—H10A		124.8
C4—0	C5—C6	118.37 (12)	C10-C11-N2		115.75 (12)
C4—0	С5—Н5А	120.8	,	C10-C11-H11A		122.1
С6—(С5—Н5А	120.8		N2-C11-H11A		122.1
C5—(C6—C1	121.75 (13)			
С6—(C1—C2—C3	-2.9 (2)		C6—C1—C7—C8		112.46 (14)
С7—С	C1—C2—C3	176.27 (13)	C9—N1—C8—O1		1.1 (2)
С6—С	C1—C2—Cl1	176.52 (10)	C9—N1—C8—C7		-179.52 (12)
С7—С	C1—C2—Cl1	-4.33 (1	9)	C1—C7—C8—O1		-8.1 (2)
C1—0	C2—C3—C4	1.7 (2)		C1-C7-C8-N1		172.59 (11)
Cl1—	C2—C3—C4	-177.67	(11)	C11—N2—C9—N	1	-178.62 (12)
C2—0	C3—C4—C5	0.9 (2)		C11—N2—C9—S	1	0.80 (15)
C2—0	C3—C4—Cl2	179.95 (11)	C8—N1—C9—N2		172.32 (12)

supporting information

C3—C4—C5—C6	-2.1 (2)	C8—N1—C9—S1	-7.0 (2)
Cl2—C4—C5—C6	178.79 (11)	C10—S1—C9—N2	-0.69 (11)
C4—C5—C6—C1	0.9 (2)	C10—S1—C9—N1	178.71 (13)
C2-C1-C6-C5	1.5 (2)	C9—S1—C10—C11	0.35 (12)
C7—C1—C6—C5	-177.65 (13)	S1-C10-C11-N2	0.02 (18)
C2—C1—C7—C8	-66.66 (17)	C9—N2—C11—C10	-0.52 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
C5—H5A···O1 ⁱ	0.95	2.50	3.3253 (15)	145
N1—H1A····N2 ⁱⁱ	0.88	2.04	2.9052 (15)	168

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+2.