

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 1,4-bis(4-chlorophenyl)-2-methyl-1H-pyrrole-3-carboxylate

K. N. Nandeesh,^a Chandra,^b M. Mahendra,^b K. Palani^c and K. Mantelingu^a*

^aDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006. India, ^bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and ^cSER-CAT, APS, Argonne National Laboratory, Argonne, IL 60439, USA

Correspondence e-mail: kmantelingu@yahoo.com

Received 8 June 2013; accepted 11 July 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.125; data-to-parameter ratio = 18.4.

In the title molecule, C₂₀H₁₇Cl₂NO₂, the pyrrole moiety makes dihedral angles of 63.42(11) and $70.43(12)^{\circ}$ with the chlorobenzene rings. The ethoxycarbonyl unit is present in a synperiplanar conformation with respect to the pyrrole ring, as indicated by the dihedral angle of $14.5 (3)^{\circ}$. In the crystal, molecules are linked into chains parallel to the a-axis direction by weak $C-H \cdots O$ hydrogen bonds.

Related literature

For the biological importance of pyrroles, see: Banwell et al. (2006); Mohamed et al. (2009); Sosa et al. (2002).

Experimental

Crystal data $C_{20}H_{17}Cl_2NO_2$ $M_r = 374.25$

Triclinic, $P\overline{1}$ a = 8.037 (2) Å

b = 9.797 (3) Å	Z = 2
c = 12.510 (4) Å	Mo $K\alpha$ radiation
$\alpha = 72.774 \ (16)^{\circ}$	$\mu = 0.37 \text{ mm}^{-1}$
$\beta = 86.838 \ (16)^{\circ}$	T = 296 K
$\gamma = 76.804 \ (16)^{\circ}$	$0.15 \times 0.15 \times 0.15$ mm
$V = 915.9 (5) \text{ Å}^3$	

Data collection

Bruker SMART APEXII CCD	15843 measured reflections
area-detector diffractometer	4196 independent reflections
Absorption correction: multi-scan	2759 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2001)	$R_{\rm int} = 0.032$
$T_{\min} = 0.947, \ T_{\max} = 0.947$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	228 parameters
$wR(F^2) = 0.125$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
4196 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$C2-H2\cdots O8^i$ 0.932.583.453 (3)157 $C6-H6C\cdots O8$ 0.962.423.041 (3)122	$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
	$C2-H2\cdotsO8^{i}$ $C6-H6C\cdotsO8$	0.93 0.96	2.58 2.42	3.453 (3) 3.041 (3)	157 122

Symmetry code: (i) x + 1, y, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97

C and KNN would like to thank the University of Mysore for awarding RFSMS fellowships [DV5/Physics/389/RFSMS/ 2009-2010/10.07.2012 and No. F4-1/2006(BSR)/7-131/2007, respectively].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2292).

References

- Banwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627-4638.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Mohamed, M. S., El-Domany, R. A. & El-Hameed, R. H. A. (2009). Acta Pharm. 59, 145-158.
- Sheldrick, G. M. (2001). SADABS, University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sosa, A. C. B., Yakushijin, K. & Horne, D. A. (2002). J. Org. Chem. 67, 4498-4500.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2013). E69, o1269 [doi:10.1107/S1600536813019247]

Ethyl 1,4-bis(4-chlorophenyl)-2-methyl-1H-pyrrole-3-carboxylate

K. N. Nandeesh, Chandra, M. Mahendra, K. Palani and K. Mantelingu

S1. Comment

Pyrrole is a five-membered heterocyclic ring with one nitrogen atom. Its derivatives exhibit a variety of biological activities such as antitumor (Banwell *et al.*, 2006) and antimicrobial (Mohamed *et al.*, 2009) activities. They also inhibit protein kinase (Sosa *et al.*, 2002). With this background of pyrrole derivatives, we have synthesized the title compound in order to study its crystal structure.

In the molecular structure of the title compound (Fig. 1), the dihedral angle between the pyrrole ring (N1/C2/C3/C4/C5) with phenyl rings (C19/C20/C21/C22/C23/C24) and (C12/C13/C14/C15/C16/C17) are 63.42 (11)° and 70.43 (12)°, respectively. The ethoxycarbonyl unit is in *syn-periplanar* conformation with respect to the pyrrole moiety, as indicated by the dihedral angle value of 14.5 (3)° (C3/C4/C7/O9). There are no classical hydrogen bonds and the crystal structure is stabilized by C—H…O hydrogen bonds only (see Table 1). C6—H6C…O8 forms an intramolecular hydrogen bond, while C2—H2…O8 links molecules which are parallel to the axis *a*. The packing of the molecules is shown in Fig. 2.

S2. Experimental

To a stirred solution of *para*-chloroaniline (1.5 mmol), *para*-chlorobenzaldehyde (1.0 mmol) and ethyl acetoacetate (1.0 mmol) in nitromethane (1.5 ml), ferric chloride (FeCl₃) (0.1 mmol) was added. The mixture was refluxed at 90–100°C for 6 hrs and then cooled to room temperature. The excess of solvent was removed under vacuum and the residue was directly purified by column chromatography using 60–120 silica gel with ethyl acetate in hexane (1:9) as eluent which afforded the desired product as yellow solid with 88% yield. The crude product has been recrystallized from hot ethanol. Typical size of the block-shaped crystals was $0.20 \times 0.15 \times 0.10$ mm.

S3. Refinement

All the H atoms were located in the difference electron density map. Nevertheless all the H atoms were situated into the idealized positions and allowed to ride on their parent atoms with C–H distances equal to 0.93, 0.96 and 0.97Å for aryl, methylene and methyl hydrogens. $U_{iso}H_{aryl/methylene} = 1.2U_{eq}C_{aryl/methylene}$ and $U_{methyl} = 1.5U_{eq}C_{methyl}$

Figure 1

The title molecule with the labelling scheme. The displacement ellipsoids are shown at the 50% probability level.

Figure 2

Packing diagram of the molecule viewed parallel to the *a* axis.

Ethyl 1,4-bis(4-chlorophenyl)-2-methyl-1H-pyrrole-3-carboxylate

Crystal data C₂₀H₁₇Cl₂NO₂ $M_r = 374.25$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.037 (2) Å b = 9.797 (3) Å c = 12.510 (4) Å a = 72.774 (16)° $\beta = 86.838$ (16)° $\gamma = 76.804$ (16)° V = 915.9 (5) Å³

Z = 2 F(000) = 388 $D_x = 1.357 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4196 reflections $\theta = 1.7-27.5^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ T = 296 K Block, yellow $0.15 \times 0.15 \times 0.15 \text{ mm}$ Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2001) $T_{\min} = 0.947, T_{\max} = 0.947$	15843 measured reflections 4196 independent reflections 2759 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -10 \rightarrow 10$ $k = -12 \rightarrow 12$ $l = -16 \rightarrow 16$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.125$ S = 1.03 4196 reflections 228 parameters 0 restraints 66 constraints	Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0487P)^2 + 0.2827P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å ⁻³ $\Delta\rho_{min} = -0.29$ e Å ⁻³

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl18	0.20768 (10)	0.57041 (7)	0.24828 (5)	0.0884 (2)	
Cl25	0.78934 (10)	-0.46743 (9)	1.16162 (6)	0.1057 (3)	
09	-0.18070 (16)	0.14269 (16)	0.59033 (12)	0.0585 (4)	
08	-0.27098 (18)	0.0253 (2)	0.75691 (13)	0.0735 (5)	
N1	0.2589 (2)	-0.07110 (19)	0.83555 (13)	0.0521 (4)	
C13	0.1310 (3)	0.2004 (2)	0.46496 (17)	0.0554 (5)	
H13	0.1005	0.1157	0.4616	0.067*	
C12	0.1613 (2)	0.2151 (2)	0.56891 (15)	0.0458 (4)	
C3	0.1594 (2)	0.0973 (2)	0.67518 (15)	0.0470 (4)	
C7	-0.1558 (2)	0.0648 (2)	0.69825 (16)	0.0498 (5)	
C4	0.0231 (2)	0.0321 (2)	0.73283 (15)	0.0458 (4)	
C15	0.1876 (3)	0.4336 (2)	0.37081 (17)	0.0562 (5)	
C17	0.2025 (3)	0.3436 (2)	0.56978 (17)	0.0554 (5)	
H17	0.2219	0.3576	0.6380	0.066*	
C14	0.1448 (3)	0.3078 (2)	0.36672 (17)	0.0589 (5)	
H14	0.1251	0.2949	0.2982	0.071*	

C19	0.3838 (2)	-0.1689 (2)	0.91686 (16)	0.0505 (5)
C2	0.2999 (2)	0.0304 (2)	0.74178 (16)	0.0533 (5)
H2	0.4079	0.0502	0.7263	0.064*
C22	0.6316 (3)	-0.3508 (3)	1.06663 (17)	0.0615 (6)
C16	0.2157 (3)	0.4528 (2)	0.47182 (19)	0.0640 (6)
H16	0.2436	0.5388	0.4746	0.077*
C6	0.0083 (3)	-0.1721 (3)	0.92294 (19)	0.0655 (6)
H6A	-0.0078	-0.1366	0.9874	0.098*
H6B	0.0816	-0.2684	0.9426	0.098*
H6C	-0.1003	-0.1764	0.8973	0.098*
C5	0.0887 (2)	-0.0707(2)	0.83166 (16)	0.0501 (5)
C23	0.6287 (3)	-0.3663 (3)	0.9623 (2)	0.0794 (8)
H23	0.7100	-0.4383	0.9421	0.095*
C20	0.3894 (3)	-0.1548 (3)	1.02199 (18)	0.0664 (6)
H20	0.3088	-0.0826	1.0424	0.080*
C21	0.5134 (3)	-0.2469 (3)	1.09782 (18)	0.0690 (6)
H21	0.5162	-0.2381	1.1697	0.083*
C24	0.5039 (3)	-0.2739 (3)	0.88682 (18)	0.0721 (7)
H24	0.5014	-0.2832	0.8151	0.087*
C10	-0.3529 (3)	0.1775 (3)	0.54626 (19)	0.0698 (6)
H10A	-0.4272	0.2462	0.5798	0.084*
H10B	-0.3972	0.0894	0.5630	0.084*
C11	-0.3464 (3)	0.2438 (3)	0.4224 (2)	0.0822 (8)
H11A	-0.3013	0.3303	0.4068	0.123*
H11B	-0.4596	0.2694	0.3910	0.123*
H11C	-0.2742	0.1744	0.3900	0.123*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C118	0.1196 (6)	0.0733 (4)	0.0583 (4)	-0.0226 (4)	0.0054 (3)	0.0019 (3)
Cl25	0.1053 (6)	0.1152 (6)	0.0738 (4)	0.0282 (4)	-0.0484 (4)	-0.0242 (4)
08	0.0469 (8)	0.1037 (13)	0.0608 (9)	-0.0179 (8)	0.0010 (7)	-0.0098 (9)
09	0.0441 (7)	0.0719 (10)	0.0534 (8)	-0.0092 (7)	-0.0091 (6)	-0.0103 (7)
N1	0.0445 (9)	0.0604 (10)	0.0448 (9)	-0.0098 (7)	-0.0067 (7)	-0.0056 (8)
C2	0.0458 (11)	0.0623 (13)	0.0474 (11)	-0.0157 (9)	-0.0044 (8)	-0.0057 (10)
C3	0.0447 (10)	0.0518 (11)	0.0444 (10)	-0.0085 (8)	-0.0044 (8)	-0.0146 (9)
C4	0.0431 (10)	0.0495 (11)	0.0440 (10)	-0.0073 (8)	-0.0011 (8)	-0.0143 (9)
C5	0.0445 (10)	0.0551 (12)	0.0495 (11)	-0.0099 (9)	-0.0014 (8)	-0.0141 (9)
C6	0.0567 (13)	0.0673 (15)	0.0614 (14)	-0.0137 (11)	0.0008 (10)	-0.0022 (11)
C7	0.0471 (11)	0.0542 (12)	0.0470 (11)	-0.0065 (9)	-0.0031 (9)	-0.0163 (9)
C10	0.0461 (11)	0.0895 (17)	0.0670 (14)	-0.0050 (11)	-0.0159 (10)	-0.0172 (13)
C11	0.0730 (16)	0.104 (2)	0.0638 (15)	-0.0006 (14)	-0.0226 (12)	-0.0256 (14)
C12	0.0391 (9)	0.0498 (11)	0.0454 (10)	-0.0043 (8)	-0.0050 (7)	-0.0126 (9)
C13	0.0609 (12)	0.0560 (12)	0.0521 (12)	-0.0145 (10)	-0.0025 (9)	-0.0181 (10)
C14	0.0657 (13)	0.0681 (14)	0.0432 (11)	-0.0131 (11)	-0.0025 (9)	-0.0177 (10)
C15	0.0562 (12)	0.0538 (12)	0.0487 (11)	-0.0031 (9)	0.0008 (9)	-0.0072 (10)
C16	0.0803 (15)	0.0499 (12)	0.0617 (14)	-0.0140 (11)	-0.0046 (11)	-0.0157 (11)

supporting information

C17	0.0637 (13)	0.0549 (13)	0.0474 (11)	-0.0092(10)	-0.0085(9) -0.0073(8)	-0.0161(10)
C19 C20	0.0676 (14)	0.0734 (15)	0.0534 (13)	0.0026 (11)	-0.0073 (8) -0.0073 (10)	-0.0238(11)
C21	0.0756 (15)	0.0849 (17)	0.0443 (11)	-0.0051 (13)	-0.0134 (10)	-0.0225 (12)
C22	0.0628 (13)	0.0675 (14)	0.0463 (11)	-0.0038 (11)	-0.0170 (9)	-0.0098 (10)
C23	0.0809 (16)	0.0853 (18)	0.0589 (14)	0.0205 (13)	-0.0208 (12)	-0.0267 (13)
C24	0.0764 (15)	0.0865 (17)	0.0474 (12)	0.0090 (13)	-0.0181 (10)	-0.0275 (12)

Geometric parameters (Å, °)

Cl18—C15	1.740 (2)	C19—C24	1.366 (3)
Cl25—C22	1.739 (3)	C20—C21	1.376 (3)
O8—C7	1.211 (2)	C21—C22	1.358 (4)
O9—C7	1.340 (2)	C22—C23	1.360 (3)
O9—C10	1.447 (3)	C23—C24	1.379 (4)
N1—C2	1.375 (3)	C2—H2	0.9300
N1—C5	1.371 (2)	C6—H6A	0.9600
N1-C19	1.434 (3)	C6—H6B	0.9600
C2—C3	1.357 (3)	С6—Н6С	0.9600
C3—C4	1.445 (2)	C10—H10A	0.9700
C3—C12	1.482 (3)	C10—H10B	0.9700
C4—C5	1.383 (3)	C11—H11A	0.9600
C4—C7	1.461 (2)	C11—H11B	0.9600
C5—C6	1.499 (3)	C11—H11C	0.9600
C10—C11	1.495 (3)	C13—H13	0.9300
C12—C13	1.390 (3)	C14—H14	0.9300
C12—C17	1.376 (3)	C16—H16	0.9300
C13—C14	1.379 (3)	C17—H17	0.9300
C14—C15	1.369 (3)	C20—H20	0.9300
C15—C16	1.369 (3)	C21—H21	0.9300
C16—C17	1.385 (3)	С23—Н23	0.9300
C19—C20	1.367 (3)	C24—H24	0.9300
Cl18····C21 ⁱ	3.505 (3)	C10···H2 ^v	3.0500
Cl18…H23 ⁱⁱ	3.0100	C10…H16 ^{vii}	3.0400
Cl25…H17 ⁱⁱⁱ	3.0000	C11…H16 ^{vii}	3.0700
O8…C6	3.041 (3)	C15…H11B ^x	2.9100
O8…C20 ^{iv}	3.377 (3)	C17···H10A ^x	2.9100
O9…C12	2.971 (2)	С19…Н6В	2.7900
O9…C13	2.957 (3)	H2···O8 ^x	2.5800
O8…H10A	2.7200	H2···C10 ^x	3.0500
O8…H10B	2.5300	H2…H10B ^x	2.5000
O8····H20 ^{iv}	2.7200	H6B…C19	2.7900
O8····H21 ^{iv}	2.8500	H6C…O8	2.4200
O8…H2 ^v	2.5800	H6C…C7	2.8500
O8…H6C	2.4200	H10A…O8	2.7200
O9…H13	2.7100	H10A…C17 ^v	2.9100
O9…H13 ^{vi}	2.7300	H10B…O8	2.5300

O9…H16 ^{vii}	2.9100	$H10B\cdots H2^{v}$	2.5000
C6…O8	3.041 (3)	H11A…H16 ^{vii}	2.3500
C6…C20	3.424 (4)	H11B…C15 ^v	2.9100
C12····O9	2.971 (2)	H11B····H24 ^{vi}	2.5800
C13····O9	2.957 (3)	H11C····C2 ^{vi}	3.0000
C15····C17 ^{vii}	3.567 (3)	H11C····C3 ^{vi}	2.9500
C16····C17 ^{vii}	3.473 (3)	H13…O9	2.7100
C16···C16 ^{vii}	3.468 (4)	H13····O ^{9vi}	2.7300
C17···C15 ^{vii}	3.567 (3)	H13····C7 ^{vi}	2,9900
C17···C16 ^{vii}	3 473 (3)	H16····O9 ^{vii}	2 9100
$C20\cdots O8^{iv}$	3 377 (3)	H16····C10 ^{vii}	3 0400
C20···C6	3.377(3) 3.424(4)	H16···C11 ^{vii}	3 0700
$C_{20} C_{118}^{\text{viii}}$	3,505 (3)	H16H114 ^{vii}	2 3500
C_{23} C_{23} ^{ix}	3.503(5) 3.582(4)	H17C2	3 0100
$C_{23} C_{23} C_{23}$	3.0000	H17C125 ⁱⁱⁱ	3,0000
C2H24	3.0000		3.0000
C2H24	3.0200		2.7200
	3.0100		2.8500
	2.9500	H23···CI18"	3.0100
C7H13.	2.9900		3.0200
С/…Н6С	2.8500	$H24\cdots H11B^{vr}$	2.5800
G7 00 C 10			120 4 (2)
C/09C10	116.77 (15)	C19—C24—C23	120.4 (2)
C2—N1—C5	109.47 (16)	N1—C2—H2	125.00
C2—N1—C19	122.99 (16)	C3—C2—H2	125.00
C5—N1—C19	127.29 (16)	С5—С6—Н6А	109.00
N1—C2—C3	109.90 (16)	С5—С6—Н6В	109.00
C2—C3—C4	105.42 (16)	С5—С6—Н6С	109.00
C2—C3—C12	122.85 (16)	H6A—C6—H6B	109.00
C4—C3—C12	131.70 (16)	H6A—C6—H6C	110.00
C3—C4—C5	108.37 (15)	H6B—C6—H6C	109.00
C3—C4—C7	128.27 (17)	O9—C10—H10A	110.00
C5—C4—C7	123.36 (16)	O9—C10—H10B	110.00
N1—C5—C4	106.84 (16)	C11—C10—H10A	110.00
N1—C5—C6	121.23 (18)	C11-C10-H10B	110.00
C4—C5—C6	131.92 (17)	H10A-C10-H10B	108.00
O8—C7—O9	122.15 (17)	C10-C11-H11A	109.00
O8—C7—C4	125.71 (18)	C10-C11-H11B	109.00
O9—C7—C4	112.13 (15)	C10-C11-H11C	109.00
O9—C10—C11	107.67 (19)	H11A—C11—H11B	109.00
C3—C12—C13	123.03 (18)	H11A—C11—H11C	110.00
C3—C12—C17	119.97 (17)	H11B—C11—H11C	110.00
C13—C12—C17	116.92 (18)	C12—C13—H13	119.00
C12—C13—C14	121.90 (19)	C14—C13—H13	119.00
C13—C14—C15	119.53 (19)	C13—C14—H14	120.00
$C_{118} - C_{15} - C_{14}$	120.60 (16)	C15-C14-H14	120.00
$C_{118} - C_{15} - C_{16}$	119.25 (17)	C15-C16-H16	120.00
C14-C15-C16	120 15 (19)	C17-C16-H16	120.00
C15-C16-C17	119.7 (2)	C12—C17—H17	119.00
	1 1 / · / \4/		11/100

C12—C17—C16	121.80 (19)	C16—C17—H17	119.00
N1-C19-C20	121.23 (19)	С19—С20—Н20	120.00
N1—C19—C24	119.19 (18)	C21—C20—H20	120.00
C20—C19—C24	119.5 (2)	C20—C21—H21	120.00
C19—C20—C21	120.4 (2)	C22—C21—H21	120.00
C20—C21—C22	119.3 (2)	С22—С23—Н23	120.00
Cl25—C22—C21	119.70 (17)	C24—C23—H23	120.00
Cl25—C22—C23	119.1 (2)	C19—C24—H24	120.00
C21—C22—C23	121.2 (2)	C23—C24—H24	120.00
C22—C23—C24	119.2 (3)		
С10—09—С7—О8	-0.2 (3)	C7—C4—C5—C6	1.5 (4)
C10—O9—C7—C4	178.21 (19)	C3—C4—C7—O8	-167.2 (2)
C7—O9—C10—C11	-171.6 (2)	C3—C4—C7—O9	14.5 (3)
C5—N1—C2—C3	-0.5(2)	C5—C4—C7—O8	12.2 (3)
C19—N1—C2—C3	174.18 (18)	C5—C4—C7—O9	-166.22 (19)
C2-N1-C5-C4	0.6 (2)	C3—C12—C13—C14	-175.6 (2)
C2—N1—C5—C6	179.4 (2)	C17—C12—C13—C14	1.3 (3)
C19—N1—C5—C4	-173.79 (19)	C3—C12—C17—C16	176.1 (2)
C19—N1—C5—C6	5.0 (3)	C13—C12—C17—C16	-0.9 (3)
C2-N1-C19-C20	110.8 (2)	C12—C13—C14—C15	-0.8 (4)
C2—N1—C19—C24	-66.3 (3)	C13—C14—C15—Cl18	179.48 (19)
C5—N1—C19—C20	-75.4 (3)	C13—C14—C15—C16	-0.3 (4)
C5—N1—C19—C24	107.5 (2)	Cl18—C15—C16—C17	-179.05 (19)
N1-C2-C3-C4	0.2 (2)	C14—C15—C16—C17	0.7 (4)
N1-C2-C3-C12	178.42 (18)	C15—C16—C17—C12	-0.1 (4)
C2—C3—C4—C5	0.2 (2)	N1-C19-C20-C21	-178.0 (2)
C2—C3—C4—C7	179.6 (2)	C24—C19—C20—C21	-1.0 (4)
C12—C3—C4—C5	-177.8 (2)	N1-C19-C24-C23	177.9 (2)
C12—C3—C4—C7	1.6 (4)	C20-C19-C24-C23	0.8 (4)
C2—C3—C12—C13	116.0 (2)	C19—C20—C21—C22	0.9 (4)
C2—C3—C12—C17	-60.8 (3)	C20—C21—C22—Cl25	179.8 (2)
C4—C3—C12—C13	-66.3 (3)	C20—C21—C22—C23	-0.6 (4)
C4—C3—C12—C17	116.9 (2)	Cl25—C22—C23—C24	-179.9 (2)
C3—C4—C5—N1	-0.5 (2)	C21—C22—C23—C24	0.5 (4)
C3—C4—C5—C6	-179.1 (2)	C22—C23—C24—C19	-0.6 (4)
C7—C4—C5—N1	-179.95 (18)		

Symmetry codes: (i) x, y+1, z-1; (ii) -x+1, -y, -z+1; (iii) -x+1, -y, -z+2; (iv) -x, -y, -z+2; (v) x-1, y, z; (vi) -x, -y, -z+1; (vii) -x, -y+1, -z+1; (viii) x, y-1, z+1; (ix) -x+1, -y-1, -z+2; (x) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C2—H2…O8 ^x	0.93	2.58	3.453 (3)	157
C6—H6 <i>C</i> ···O8	0.96	2.42	3.041 (3)	122

Symmetry code: (x) x+1, y, z.