

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2-{2-[(2-methylphenoxy)methyl]phenyl}-2-oxoacetate

Manpreet Kaur,^a Ray J. Butcher,^b Jerry P. Jasinski,^{c*} H. S. Yathirajan^a and B. P. Siddaraju^d

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^dDepartment of Chemistry, G. Madegowda Institute of Technology (GMIT), Bharathinagara 571 422, India Correspondence e-mail: jjasinski@keene.edu

Received 27 March 2013; accepted 1 April 2013

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.107; data-to-parameter ratio = 15.1.

In the title compound, $C_{17}H_{16}O_4$, the dihedral angle between the benzene rings is 4.4 (2)°. In the crystal, weak $C-H\cdots O$ hydrogen bonds connect molecules along [001].

Related literature

The title compound is used in organic synthesis as a fungicide intermediate. For background to agrochemical fungicidal activity, see: Balba (2007); Cash & Cronan (2001); Ammermann *et al.* (2000); For related structures see: Chopra *et al.* (2004); Kant *et al.* (2012). For standard bond lengths, see: Allen *et al.* (1987).

b = 7.5883 (2) Å

c = 12.5915(6) Å

 $\beta = 108.514 \ (4)^{\circ}$ V = 2869.4 (2) Å³

Experimental

Crystal data	
$C_{17}H_{16}O_4$	
$M_r = 284.30$	
Monoclinic, $C2/c$	
a = 31.6697 (11) Å	

Z = 8Cu K α radiation $\mu = 0.77 \text{ mm}^{-1}$

Data collection

Agilent Xcalibur (Ruby, Gemini)	
diffractometer	
Absorption correction: multi-scan	
(CrysAlis RED; Agilent, 2012)	
$T_{\min} = 0.921, \ T_{\max} = 1.000$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.107$ S = 1.072897 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C17-H17A\cdots O2^{i}$	0.98	2.44	3.3712 (18)	158
Symmetry code: (i) x, -	$-y, z + \frac{1}{2}.$			

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

MK thanks the UOM for research facilities. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5601).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Ammermann, E., Lorenz, G., Schelberger, K., Mueller, B., Kirstgen, R. & Sauter, H. (2000). Proceedings of the Brighton Crop Protection Conference– Pests and Diseases, Vol. 2, pp. 541–548. Alton, Hampshire, England: BCPC Publications.
- Balba, H. (2007). J. Environ. Sci. Health Part B, 42, 441-451.
- Cash, H. & Cronan, J. M. Jr (2001). US Patent Appl. WO2001-US964920010323.
- Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, 02421–02423.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Kant, R., Gupta, V. K., Kapoor, K., Shripanavar, C. S. & Banerjee, K. (2012). Acta Cryst. E68, 02425.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $0.47 \times 0.34 \times 0.14 \text{ mm}$

5506 measured reflections 2897 independent reflections

2551 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 123 K

 $R_{\rm int}=0.021$

192 parameters

 $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

supporting information

Acta Cryst. (2013). E69, o671 [https://doi.org/10.1107/S1600536813008878]

Methyl 2-{2-[(2-methylphenoxy)methyl]phenyl}-2-oxoacetate

Manpreet Kaur, Ray J. Butcher, Jerry P. Jasinski, H. S. Yathirajan and B. P. Siddaraju

S1. Comment

The title compound (I) is used in organic synthesis as a fungicide intermediate and mainly used as an intermediate for the preparation of methyl 2(E)-methoxyimino-2-[2-(2-methylphenoxymethyl)phenyl] acetate or kresoxim-methyl, which is an active agrochemical exhibiting fungicidal activity (Ammermann *et al.*, 2000; Balba, 2007; Cash & Cronan, 2001). The crystal structure of kresoxim-methyl (Chopra *et al.*, 2004) and 2-[(E)-methoxyimino]-2-{2-[(2-methylphenoxy) methyl]-phenyl}ethanoic acid (Kant *et al.*, 2012) have been reported. In view of the importance of the title compound, this paper reports its crystal structure.

In (I), the dihedral angle between the mean planes of the benzene rings is $4.4 (2)^{\circ}$ (Fig. 1). Bond lengths are in normal ranges (Allen *et al.*, 1987). In the crystal, weak C—H···O hydrogen bonds connect (Table 1) molecules along [001] (Fig. 2).

S2. Experimental

The title compound was a gift sample from RL Fine Chem, Bengaluru, India. The compound was recrystallized from methyl t-butyl ether by slow evaporation (M.P.: 322–323 K).

S3. Refinement

All H atoms were placed in calculated positions and refined using a riding-model approximation with C—H lengths of 0.95Å (CH), 0.99Å (CH₂) or 0.98Å (CH₃). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH₂) or 1.5 (CH₃) times U_{eq} of the parent atom. Secondary CH₂ refined with riding coordinates: C8(H8A,H8B.). Aromatic H refined with riding coordinates: C2(H2), C3(H3), C4(H4), C5(H5), C10(H10), C11(H11), C12(H12), C13(H13). Idealised Me refined as rotating group: C7(H7A,H7B,H7C), C17(H17A,H17B,H17C).

Figure 1

Molecular structure of the title compound showing 30% probability displacement ellipsoids.

Figure 2

Packing diagram of the title compound viewed along the b axis. Dashed lines indicate weak C—H···O intermolecular interactions. H atoms not involved in these weak intermolecular interactions have been omitted for clarity.

Methyl 2-{2-[(2-methylphenoxy)methyl]phenyl}-2-oxoacetate

Crystal data	
$C_{17}H_{16}O_4$	Monoclinic, <i>C</i> 2/ <i>c</i>
$M_r = 284.30$	<i>a</i> = 31.6697 (11) Å

Cu *K* α radiation, $\lambda = 1.54184$ Å

 $\theta = 2.9 - 75.3^{\circ}$

 $\mu = 0.77 \text{ mm}^{-1}$ T = 123 K

Prism, colorless

 $0.47 \times 0.34 \times 0.14 \text{ mm}$

Cell parameters from 3111 reflections

b = 7.5883 (2) Å c = 12.5915 (6) Å $\beta = 108.514 (4)^{\circ}$ $V = 2869.4 (2) \text{ Å}^{3}$ Z = 8 F(000) = 1200 $D_{x} = 1.316 \text{ Mg m}^{-3}$

Data collection

Agilent Xcalibur (Ruby, Gemini)	2897 independent reflections
diffractometer	2551 reflections with $I > 2\sigma(I)$
Detector resolution: 10.5081 pixels mm ⁻¹	$R_{\rm int} = 0.021$
ω scans	$\theta_{\rm max} = 75.5^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$
Absorption correction: multi-scan	$h = -39 \rightarrow 35$
(CrysAlis RED; Agilent, 2012)	$k = -8 \rightarrow 9$
$T_{\min} = 0.921, \ T_{\max} = 1.000$	$l = -12 \rightarrow 15$
5506 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.107$	$w = 1/[\sigma^2(F_o^2) + (0.0554P)^2 + 1.2142P],$
S = 1.07	where $P = (F_0^2 + 2F_c^2)/3$
2897 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
192 parameters	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.15989 (3)	0.23976 (12)	0.71615 (8)	0.0269 (2)	
O2	0.05640 (3)	0.09672 (13)	0.83488 (8)	0.0334 (2)	
03	-0.01120 (3)	0.31730 (14)	0.91715 (8)	0.0328 (2)	
O4	0.04621 (3)	0.20101 (15)	1.05392 (8)	0.0345 (3)	
C1	0.17209 (4)	0.09964 (17)	0.66403 (10)	0.0228 (3)	
C2	0.15067 (4)	-0.06284 (18)	0.64687 (10)	0.0257 (3)	
H2	0.1261	-0.0829	0.6734	0.031*	
C3	0.16520 (4)	-0.19597 (18)	0.59084 (11)	0.0298 (3)	
Н3	0.1507	-0.3071	0.5795	0.036*	
C4	0.20081 (5)	-0.16704 (19)	0.55151 (11)	0.0315 (3)	
H4	0.2105	-0.2572	0.5124	0.038*	
C5	0.22218 (4)	-0.00414 (19)	0.57003 (10)	0.0286 (3)	
Н5	0.2467	0.0149	0.5434	0.034*	
C6	0.20871 (4)	0.13107 (18)	0.62609 (10)	0.0238 (3)	
C7	0.23140 (4)	0.30732 (19)	0.64563 (12)	0.0306 (3)	

supporting information

H7A	0.2576	0.3039	0.6200	0.046*
H7B	0.2408	0.3351	0.7258	0.046*
H7C	0.2107	0.3979	0.6039	0.046*
C8	0.12311 (4)	0.21425 (17)	0.75746 (11)	0.0243 (3)
H8A	0.1293	0.1145	0.8109	0.029*
H8B	0.0958	0.1870	0.6947	0.029*
C9	0.11668 (4)	0.38121 (17)	0.81511 (10)	0.0224 (3)
C10	0.14305 (4)	0.52884 (18)	0.81747 (11)	0.0267 (3)
H10	0.1648	0.5250	0.7802	0.032*
C11	0.13820 (4)	0.68171 (18)	0.87322 (11)	0.0287 (3)
H11	0.1566	0.7806	0.8735	0.034*
C12	0.10674 (4)	0.69138 (17)	0.92858 (11)	0.0278 (3)
H12	0.1033	0.7964	0.9662	0.033*
C13	0.08042 (4)	0.54612 (17)	0.92822 (10)	0.0247 (3)
H13	0.0591	0.5515	0.9668	0.030*
C14	0.08456 (4)	0.39122 (17)	0.87205 (10)	0.0222 (3)
C15	0.05692 (4)	0.23845 (17)	0.87950 (10)	0.0243 (3)
C16	0.02595 (4)	0.26027 (16)	0.95160 (11)	0.0240 (3)
C17	0.02123 (5)	0.2110 (2)	1.13287 (13)	0.0395 (4)
H17A	0.0373	0.1474	1.2015	0.059*
H17B	-0.0082	0.1577	1.0994	0.059*
H17C	0.0177	0.3347	1.1509	0.059*

Atomic displacement parameters $(Å^2)$

	r r 11	172	1.733	1712	<i>T</i> 713	1723
	$U^{\prime\prime}$	022	033	U ¹²	015	025
01	0.0267 (4)	0.0268 (5)	0.0336 (5)	-0.0032 (4)	0.0187 (4)	-0.0044 (4)
O2	0.0380 (5)	0.0261 (5)	0.0447 (6)	-0.0063 (4)	0.0254 (4)	-0.0081 (4)
03	0.0250 (5)	0.0420 (6)	0.0332 (5)	0.0060 (4)	0.0117 (4)	-0.0003 (4)
O4	0.0296 (5)	0.0466 (6)	0.0335 (5)	0.0129 (4)	0.0189 (4)	0.0124 (4)
C1	0.0212 (5)	0.0276 (6)	0.0205 (5)	0.0017 (5)	0.0080 (4)	-0.0008(5)
C2	0.0218 (6)	0.0308 (7)	0.0260 (6)	-0.0019 (5)	0.0095 (5)	-0.0017 (5)
C3	0.0296 (7)	0.0288 (7)	0.0302 (7)	-0.0023 (5)	0.0084 (5)	-0.0042 (5)
C4	0.0339 (7)	0.0340 (7)	0.0292 (7)	0.0057 (6)	0.0138 (5)	-0.0046 (6)
C5	0.0265 (6)	0.0366 (7)	0.0269 (6)	0.0047 (5)	0.0143 (5)	0.0027 (5)
C6	0.0211 (5)	0.0299 (6)	0.0211 (5)	0.0011 (5)	0.0077 (4)	0.0028 (5)
C7	0.0281 (6)	0.0338 (7)	0.0345 (7)	-0.0043 (5)	0.0163 (5)	0.0008 (6)
C8	0.0230 (6)	0.0268 (6)	0.0278 (6)	-0.0016 (5)	0.0145 (5)	-0.0017 (5)
C9	0.0218 (5)	0.0251 (6)	0.0204 (5)	0.0013 (5)	0.0068 (4)	0.0010 (5)
C10	0.0251 (6)	0.0293 (7)	0.0277 (6)	-0.0015 (5)	0.0112 (5)	0.0007 (5)
C11	0.0272 (6)	0.0251 (6)	0.0329 (7)	-0.0035 (5)	0.0083 (5)	0.0008 (5)
C12	0.0287 (6)	0.0243 (6)	0.0285 (6)	0.0019 (5)	0.0064 (5)	-0.0041 (5)
C13	0.0226 (6)	0.0275 (6)	0.0247 (6)	0.0032 (5)	0.0086 (4)	-0.0009(5)
C14	0.0209 (5)	0.0239 (6)	0.0222 (5)	0.0013 (5)	0.0074 (4)	0.0006 (5)
C15	0.0227 (6)	0.0264 (6)	0.0261 (6)	0.0015 (5)	0.0109 (5)	0.0001 (5)
C16	0.0241 (6)	0.0214 (6)	0.0292 (6)	-0.0011 (5)	0.0124 (5)	-0.0006 (5)
C17	0.0421 (8)	0.0485 (9)	0.0376 (8)	0.0142 (7)	0.0265 (6)	0.0154 (7)

Geometric parameters (Å, °)

01—C1	1.3681 (15)	С7—Н7С	0.9800	
01—C8	1.4315 (13)	C8—H8A	0.9900	
O2—C15	1.2111 (16)	C8—H8B	0.9900	
O3—C16	1.1981 (16)	C8—C9	1.5058 (17)	
O4—C16	1.3224 (16)	C9—C10	1.3919 (18)	
O4—C17	1.4560 (15)	C9—C14	1.4204 (16)	
C1—C2	1.3907 (18)	C10—H10	0.9500	
C1—C6	1.4078 (16)	C10—C11	1.3894 (19)	
С2—Н2	0.9500	C11—H11	0.9500	
С2—С3	1.3915 (18)	C11—C12	1.3876 (18)	
С3—Н3	0.9500	C12—H12	0.9500	
C3—C4	1.3855 (19)	C12—C13	1.3810(19)	
C4—H4	0.9500	C13—H13	0.9500	
C4—C5	1.393 (2)	C13—C14	1.3993 (17)	
С5—Н5	0.9500	C14—C15	1.4736 (17)	
С5—С6	1.3871 (18)	C15—C16	1.5423 (16)	
С6—С7	1.5010 (18)	C17—H17A	0.9800	
С7—Н7А	0.9800	C17—H17B	0.9800	
С7—Н7В	0.9800	C17—H17C	0.9800	
C1—O1—C8	117.10 (10)	C9—C8—H8B	110.1	
C16—O4—C17	116.53 (10)	C10—C9—C8	121.03 (11)	
O1—C1—C2	124.43 (11)	C10—C9—C14	117.85 (11)	
O1—C1—C6	114.82 (11)	C14—C9—C8	121.09 (11)	
C2—C1—C6	120.75 (12)	C9—C10—H10	119.3	
С1—С2—Н2	120.0	C11—C10—C9	121.40 (12)	
C1—C2—C3	119.93 (11)	C11—C10—H10	119.3	
С3—С2—Н2	120.0	C10-C11-H11	119.7	
С2—С3—Н3	119.9	C12-C11-C10	120.67 (12)	
C4—C3—C2	120.26 (13)	C12—C11—H11	119.7	
С4—С3—Н3	119.9	C11—C12—H12	120.5	
C3—C4—H4	120.4	C13—C12—C11	119.02 (12)	
C3—C4—C5	119.21 (12)	C13—C12—H12	120.5	
C5—C4—H4	120.4	C12—C13—H13	119.4	
С4—С5—Н5	119.0	C12—C13—C14	121.25 (11)	
C6—C5—C4	122.02 (12)	C14—C13—H13	119.4	
С6—С5—Н5	119.0	C9—C14—C15	121.69 (11)	
C1—C6—C7	119.89 (11)	C13—C14—C9	119.81 (11)	
C5—C6—C1	117.83 (12)	C13—C14—C15	118.40 (11)	
C5—C6—C7	122.28 (11)	O2—C15—C14	126.15 (11)	
С6—С7—Н7А	109.5	O2—C15—C16	116.80 (11)	
С6—С7—Н7В	109.5	C14—C15—C16	117.05 (11)	
С6—С7—Н7С	109.5	O3—C16—O4	126.33 (12)	
H7A—C7—H7B	109.5	O3—C16—C15	124.09 (12)	
H7A—C7—H7C	109.5	O4—C16—C15	109.53 (10)	
H7B—C7—H7C	109.5	O4—C17—H17A	109.5	

O1—C8—H8A O1—C8—H8B O1—C8—C9 H8A—C8—H8B C9—C8—H8A	110.1 110.1 108.15 (10) 108.4 110.1	O4—C17—H17B O4—C17—H17C H17A—C17—H17B H17A—C17—H17C H17B—C17—H17C	109.5 109.5 109.5 109.5 109.5
O1—C1—C2—C3	178.72 (11)	C8—C9—C14—C13	177.75 (11)
O1—C1—C6—C5	-178.46 (11)	C8—C9—C14—C15	1.40 (17)
O1—C1—C6—C7	0.78 (16)	C9—C10—C11—C12	0.1 (2)
O1—C8—C9—C10	2.58 (16)	C9—C14—C15—O2	-4.4 (2)
O1—C8—C9—C14	-175.27 (10)	C9—C14—C15—C16	175.10 (10)
O2—C15—C16—O3	-92.56 (17)	C10-C9-C14-C13	-0.16 (17)
O2—C15—C16—O4	85.23 (15)	C10-C9-C14-C15	-176.51 (11)
C1—O1—C8—C9	177.79 (10)	C10-C11-C12-C13	0.47 (19)
C1—C2—C3—C4	-0.34 (19)	C11—C12—C13—C14	-0.85 (19)
C2-C1-C6-C5	0.85 (18)	C12—C13—C14—C9	0.70 (18)
C2-C1-C6-C7	-179.91 (12)	C12—C13—C14—C15	177.17 (11)
C2—C3—C4—C5	0.8 (2)	C13—C14—C15—O2	179.20 (12)
C3—C4—C5—C6	-0.5 (2)	C13—C14—C15—C16	-1.30 (17)
C4—C5—C6—C1	-0.35 (19)	C14—C9—C10—C11	-0.21 (18)
C4—C5—C6—C7	-179.57 (12)	C14—C15—C16—O3	87.90 (16)
C6—C1—C2—C3	-0.51 (19)	C14—C15—C16—O4	-94.31 (13)
C8—O1—C1—C2	1.38 (17)	C17—O4—C16—O3	-1.9 (2)
C8—O1—C1—C6	-179.34 (10)	C17—O4—C16—C15	-179.59 (12)
C8—C9—C10—C11	-178.12 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C17—H17 <i>A</i> ···O2 ⁱ	0.98	2.44	3.3712 (18)	158

Symmetry code: (i) x, -y, z+1/2.