

Synthetic Communications

An International Journal for Rapid Communication of Synthetic Organic Chemistry

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: https://www.tandfonline.com/loi/lsyc20

Hydrazinium Monoformate: A New Hydrogen Donor. Selective Reduction of Nitrocompounds Catalyzed by Commercial Zinc Dust

Shankare Gowda, B. K. Kempe Gowda & D. Channe Gowda

To cite this article: Shankare Gowda , B. K. Kempe Gowda & D. Channe Gowda (2003) Hydrazinium Monoformate: A New Hydrogen Donor. Selective Reduction of Nitrocompounds Catalyzed by Commercial Zinc Dust, Synthetic Communications, 33:2, 281-289, DOI: <u>10.1081/SCC-120015713</u>

To link to this article: https://doi.org/10.1081/SCC-120015713

	Published online: 21 Aug 2006.
	Submit your article to this journal 🗷
ılıl	Article views: 1161
Q ^L	View related articles 🗹
2	Citing articles: 32 View citing articles ☑

SYNTHETIC COMMUNICATIONS® Vol. 33, No. 2, pp. 281–289, 2003

Hydrazinium Monoformate: A New Hydrogen Donor. Selective Reduction of Nitrocompounds Catalyzed by Commercial Zinc Dust

Shankare Gowda, B. K. Kempe Gowda, and D. Channe Gowda*

Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, India

ABSTRACT

The nitro group in aliphatic and aromatic nitro compounds also containing reducible substituents such as ethene, nitrile, acid, phenol, halogen, ester, etc., are selectively and rapidly reduced at room temperature to corresponding amines in good yields by employing hydrazinium monoformate, in the presence of commercial zinc dust. It was observed that, hydrazinium monoformate is more effective than hydrazine or formic acid and reduction of nitro group occurs without hydrogenolysis in the low cost zinc dust compared to expensive metals like palladium.

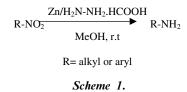
0039-7911 (Print); 1532-2432 (Online)

www.dekker.com

^{*}Correspondence: D. Channe Gowda, Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, 570 006, India. Fax: +091-0821-421263/518835; E-mail: dcgowda@yahoo.com.

282

Gowda, Gowda, and Gowda


Key Words: Hydrazinium monoformate; Zinc; Catalytic transfer hydrogenation; Nitro compounds; Reduction; Amines.

Rapid and selective reduction of nitro compounds is of importance for the preparation of amino derivatives in the organic synthesis both practically and industrially, particularly when a molecule has other reducible moieties. [1-5] The synthesis and biological evaluation of aromatic amines are also active and most important areas of research and their chemistry by derivative formation is widely studied. [6,7] Numerous new reagents have been developed for the reduction of aromatic nitrocompounds. [8] Though some of these are widely used, still they have limitations based on safety and handling considerations. For example, catalytic transfer hydrogenation^[9–11] of nitro or azido compounds in the presence of metals such as palladium on carbon or platinum on carbon require stringent precautions, because of their flammable nature in the presence of air. In addition, some methods require compressed hydrogen gas, which is highly diffusible and flammable, and vacuum pump to create high pressure within reaction flask. To overcome these difficulties, several new methodologies have also been developed. [12,13] However, little attention has been given to the reduction of aliphatic nitrocompounds, [14-16] which are traditionally reduced by high-pressure catalytic hydrogenation.^[17–19] In addition to above mentioned limitations, most of these methods are unfortunately subject to substantial limitations as concerns the reducible functionalities and lack therefore desired generality for the true synthetic utility. Moreover, poor selectivity was reported in the reduction of aromatic nitro compounds, which have halogen, nitrile, carboxyl, hydroxyl etc., as substituents. Reduction at reflux temperature for hours together can cause rearrangements and cyclization in poly functional nitrocompounds. Therefore, we examined several methods to improve reduction process, and especially to obtain selectivity over reducible or other labile substituents. In this context, use of 5% platinum on carbon was found to be efficient but not cost effective.[20]

Recently, metal mediated reactions have been found to have wide scope in organic synthesis, because of their simple work-up and selectivity. Several methods have been developed based on the use of a variety of metals such as magnesium, [21] indium, [8,22,23] tin, [24] zinc. [25] The utility of zinc for the synthesis of β - γ -unsaturated ketones by a reaction of an acid chloride with allyl bromide [26] and homoallylic alcohols [27] has been demonstrated. Further, the zinc mediated preparation of triphenyl

Hydrazinium Monoformate

283

phosphonium ylides,^[28] Fridel–Crafts acylation^[29] and carbamates formation^[30] has been demonstrated.

In this communication, we wish to report, a rapid and simple reduction of aliphatic and aromatic nitrocompounds to the corresponding amino derivatives by using commercial zinc dust and hydrazinium monoformate, at room temperature (Sch. 1). This new system reduced with ease a wide variety of nitro compounds directly to the corresponding amines and many functional groups are tolerated. This system is not helpful to obtain directly an amino carbonyl compound, due to the formation of hydrazone derivative with donor. However, the nitro hydrazones are reduced to corresponding amino hydrazones by this system. But, the thing is, in order to get amino carbonyl derivative, hydrazone should be subjected to hydrolysis. In both nitro aldehydes as well as nitro ketones, the products were obtained in almost pure and comparable yields.

The reduction of nitrocompound in the presence of zinc dust and hydrazinium monoformate was complete within one to ten min. The course of reaction was monitored by thin layer chromatography and IR spectra. The work-up and isolation of the products were easy. Thus, all the compounds reduced (Table 1) by this system were obtained in good yields (90–95%). All the products were characterized by comparison of their TLC, IR spectra, and melting points with authentic samples. A control experiment was carried out using nitro compounds with hydrazinium monoformate but without zinc dust, does not yield the desired product. No other intermediates, such as nitroso or hydroxylamine could be detected in the reaction mixture. In order to test the selectivity, reduction was attempted with p-dichloro benzene, p-chloro-m-cresol, β -naphthol, cinnamic acid, acetanilide, benzoic acid, anisole, benzonitrile, phenyl acetate, etc., at laboratory temperature. However, the reaction failed to give any reduced product.

Hydrazinium diformate, a white crystalline compound obtained by the neutralization of one mole of hydrazine hydrate with two mole of 85% formic acid was found to be inactive to this system. Further, hydrazinium monoformate is more effective than either hydrazine or formic

284

Table 1. Zinc catalyzed reduction of nitro compounds using hydrazinium monoformate.

Gowda, Gowda, and Gowda

				Melting point (°C)	oint (°C)
Nitro compound	Reaction time in min	Product	${ m Yield}^a$ (%)	Found	Lit.
o-Nitrophenol	2	o-Aminophenol	93	173–175	174
m-Nitrophenol	2	m-Aminophenol	94	121 - 123	123
2,4-Dinitrophenol	2	2,4-Diaminophenol	95	79–80	79
o-Nitrotoluene	2.5	o-Toluidine ^b	93	142 - 144	144
<i>m</i> -Nitrotoluene	2.5	<i>m</i> -Toluidine ^b	92	124-126	125
<i>p</i> -Nitrotoluene	2	<i>p</i> -Toluidine	94	44-45	45
2,4-Dinitrotoluene	2.5	2,4-Diaminotoluene	91	66-86	66
o-Dinitrobenzene	3	o-Phenylenediamine	93	101 - 104	102
<i>m</i> -Dinitrobenzene	2.5	<i>m</i> -Phenylenediamine	93	63–65	64
α -Nitronaphthalene	2	α -Naphthylamine	92	50-51	50
β-Nitronaphthalene	2	β-Naphthylamine	94	111-113	113
o-Nitroanisole	2.5	o-Anisidine ^b	94	58–60	09
<i>m</i> -Nitroanisole	2	<i>m</i> -Anisidine ^c	95	81–82	80
<i>p</i> -Nitroanisole	2	<i>p</i> -Anisidine	95	56–57	27
o-Nitroaniline	2.5	o-Phenylenediamine	93	100 - 103	102
<i>m</i> -Nitroaniline	2.5	<i>m</i> -Phenylenediamine	94	64–65	64
<i>p</i> -Nitroaniline	2	<i>p</i> -Phenylenediamine	94	140 - 143	141
m-Nitrobenzyl alcohol	3	m-Aminobenzyl alcohol	91	86-96	26
<i>p</i> -Nitrobenzamide	2.5	<i>p</i> -Aminobenzamide	92	115–116	114
<i>p</i> -Nitrophenylacetate	2.5	<i>p</i> -Aminophenylacetate ^c	93	148-151	150
2,2'-Dinitrodibenzyl	5	2,2'-Diaminodibenzyl	06	222–226	223

Hydrazinium Monoformate

o-Nitrobenzoic acid	2	o-Aminobenzoic acid	92	144-147	145
<i>m</i> -Nitrobenzoic acid	2.5	<i>m</i> -Aminobenzoic acid	94	174–176	174
<i>p</i> -Nitrobenzoic acid	2.5	<i>p</i> -Aminobenzoic acid	85	184-187	186
o-Nitrochloro benzene	2	o-Chloroaniline ^b	92	99-100	66
<i>m</i> -Nitrochloro benzene	2.5	<i>m</i> -Chloroaniline ^b	92	120 - 123	122
<i>p</i> -Nitrochloro benzene	2	p-Chloroanilne	93	70–71	71
o-Nitrobromo benzene	2.5	o-Bromoaniline ^b	94	115-117	116
<i>m</i> -Nitrobromo benzene	3	m-Bromoaniline ^b	94	118-121	120
<i>p</i> -Nitrobromo benzene	2.5	<i>p</i> -Bromoaniline	95	99–59	99
<i>m</i> -Nitroiodo benzene	2.5	<i>m</i> -Iodoaniline	91	119–121	119
<i>p</i> -Nitrocinnamic acid	3	p-Aminocinnamic acid ^d	06	265–268	265–270
<i>p</i> -Nitrobenzonitrile	2.5	<i>p</i> -Aminobenzonitrile	91	84–85	83–85
<i>p</i> -Nitrophenylacetonitrile	ю	<i>p</i> -Aminophenylacetonitrile	91	45-48	45-48
p-Nitrophenethyl alcohol	3	p-Aminophenethyl alcohol	92	108 - 1111	108 - 110
<i>p</i> -Nitroacetanilide	3	<i>p</i> -Aminoacetanilide	93	163-165	163
3,5-Dinitrobenzoic acid	4	3,5-Diaminobenzoic acid	91	234–238	235–238
Methyl-p-nitrocinnamate	3.5	Methyl-p-aminocinnamate	91	128 - 130	129
Nitromethane	2	Methylamine ^d	80	230–233	232–234
Nitroethane	2	Ethylamine ^d	81	106 - 108	107 - 108
1-Nitropropane	2	1-Aminopropane ^d	84	158 - 160	160 - 162
1-Nitrobutane	2.5	1-Aminobutane ^e	75	78–80	78

 $[^]a\mathrm{Isolated}$ yields are based on single experiment and the yields were not optimized. $^b\mathrm{Isolated}$ as benzoyl derivative.

^cIsolated as acetyl derivative.

^dIsolated as hydrochloride salt.

^eBoiling point.

286

Gowda, Gowda, and Gowda

acid with zinc dust. Most of the reactions are complete in less than one minute as monitored by the disappearance of the starting materials and concomitant formation of the product via TLC methods.

Thus the reduction of nitrocompounds can be accomplished with commercial zinc dust instead of expensive platinum or palladium etc., with out effecting the reduction of any reducible or hydrogenolysable substituents. The yields are virtually quantitative and analytically pure. The obvious advantages of proposed method over previous methods are: (i) selective reduction of nitro compounds, in the presence of other reducible or hydrogenolysable groups, (ii) easy to operate, (iii) rapid reduction, (iv) high yields of substituted amines, (v) avoidance of strong acid media, (vi) no requirement of pressure apparatus, and (vii) less expensive. This procedure will therefore be of general use, especially in the cases where rapid, mild and selective reduction is required. Further investigations of other useful applications related to deblocking of protecting groups in peptide synthesis are in progress.

Typical Procedure

The hydrazinium monoformate was prepared by neutralizing slowly, equal moles of hydrazine hydrate and 85% formic acid in an ice water bath, with constant stirring. Thus obtained hydrazinium monoformate solution is used as such for reduction. A suspension of an appropriate nitrocompound (5 mmol) and zinc dust (10 mmol) in methanol or in any suitable solvent (3 mL) was stirred under nitrogen atmosphere with hydrazinium monoformate (2 mL), at room temperature. The reaction was exothermic and effervescent. After the completion of reaction (monitored by TLC), the reaction mixture was filtered through celite. The organic layer is evaporated and the residue was dissolved in chloroform or dichloromethane or ether was washed with saturated sodium chloride solution to remove excess of hydrazinium monoformate. The organic layer after drying and evaporation gave the desired amino derivative.

In order to get good yield of volatile aliphatic amine, the reaction was carried out by controlled addition of hydrazinium monoformate, through the top of ice water circulated condenser and by immersing the reaction flask in a cold-water bath. After filtration, whole reaction mixture was neutralized with HCl. The solvent was evaporated under reduced pressure. The residue was lyophilized or subjected to column chromatography. Aliphatic amines are obtained as their hydrochloride salts up to 80% yield.

Hydrazinium Monoformate

287

REFERENCES

- 1. Ram, S.; Ehrenkaufer, R.E. A general procedure for mild and rapid reduction of aliphatic and aromatic nitro compounds using ammonium formate as a catalytic transfer agent. Tetrahedron Lett. **1984**, 25 (32), 3415–3418.
- 2. Yuste, F.; Saldana, M.; Walls, F. Selective reduction of aromatic nitro compounds containing *O* and *N*-benzyl groups with hydrazine and raney nickel. Tetrahedron Lett. **1982**, *23* (2), 147–148.
- 3. Lyle, R.E.; LaMattina, J.L. Selective hydrogenation of 2,6-dinitro-anilines. Synthesis **1974**, (10), 726–727.
- 4. Ho, T.L.; Wang, C.M. Reduction of aromatic nitro compounds by titanium(III) chloride. Synthesis **1974**, (1), 45.
- 5. Onopchenko, A.; Sabourin, E.T.; Selwitz, C.M. Selective catalytic hydrogenation of aromatic nitro groups in the presence of acetylenes. Synthesis of (3-aminophenyl)acetylene via hydrogenation of (3-nitrophenyl)acetylene over cobolt polysulphide and ruthenium sulphide catalyst. J. Org. Chem. **1979**, *44* (21), 3671–3674.
- Askin, D.; Wallace, M.A.; Vacca, J.P.; Reamer, R.A.; Volante, R.P.; Shinkai, I. Highly diastereoselective alkylation of amide enolates: new route to hydroxyethylene dipeptide isostere inhibitors of HIV-1 protease. J. Org. Chem. 1992, 57 (10), 2771–2773.
- 7. Ojima, I.; Kato, K.; Nakahashi, K.; Fuchikami, T.; Fujita, M. New and effective routes to fluoro analogues of aliphatic and aromatic amino acids. J. Org. Chem. **1989**, *54* (19), 4511–4522.
- 8. Pitts, M.R.; Harrison, J.R.; Moody, C.J. Indium metal as a reducing agent in organic synthesis. J. Chem. Soc., Perkin Trans. 1 **2001**, (9), 955–977 and references cited therein.
- 9. Greenspoon, N.; Keinan, E. Selective deoxygenation of unsaturated carbohydrates with Pd(0)/Ph₂SiH₂/ZnCl₂. Total synthesis of (+)-(*S*,*S*)-(6-methyltetrahydropyran-2-yl)acetic acid. J. Org. Chem. **1988**, *53* (16), 3723–3731.
- 10. Johnstone, R.A.W.; Wilby, A.H.; Entwistle, I.D. Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds. Chem. Rev. 1985, 85, 129–170.
- 11. Johnson, H.E.; Crosby, D.G. *N*-Alkylation of amides. A novel procedure. J. Org. Chem. **1962**, *27*, 2205.
- 12. Banik, B.K.; Barakat, K.J.; Wagle, D.R.; Manhas, M.S.; Bose, A.K. Microwave-assisted rapid and simplified hydrogenation. J. Org. Chem. **1999**, *64* (16), 5746–5753.

288

Gowda, Gowda, and Gowda

- 13. Wiener, H.; Blum, J.; Sasson, Y. Studies on the mechanism of transfer hydrogenation of nitroarenes by formate salts catalysed by Pd/C. J. Org. Chem. **1991**, *56* (14), 4481–4486.
- 14. Akita, Y.; Inaba, M.; Uchida, H.; Ohta, A. Reduction of some nitro compounds and sulfoxides with chromium(II) chloride. Synthesis **1977**, (11), 792–794.
- 15. Borah, H.N.; Prajapati, D.; Sandhu, J.S.; Ghosh, A.C. Bismuth(III) chloride-zinc promoted selective reduction of aromtic nitro compounds to azoxy compounds. Tetrahedron Lett. **1994**, *35* (19), 3167–3170.
- 16. Ramos, M.N.; Srivastava, R.M.; Brito, M.B.; De Sa, G.F. Configuration and conformation of benzamide *O*-(anilinocarbonyl)-oxime. J. Chem. Research (S) **1984**, (7), 228–229.
- 17. George, J.; Chandrashekaran, S. Selective reduction of nitro compounds with titanium(II) reagents. Synth. Commun. **1983**, *13* (6), 495–500.
- Finkbeiner, H.L.; Stiles, M. Chelation as a driving force in organic reactions. IV. Synthesis of α-nitro acids by control of the carboxylation decarboxylation equillibrium. J. Am. Chem. Soc. 1963, 85 (5), 616–622.
- 19. Stiles, M.; Finkbeiner, H.L. Chelation as a driving force in synthesis. A new route to α-nitro acids and α-amino acids. J. Am. Chem. Soc. **1959**, *81* (2), 505–506.
- 20. Gowda, D.C.; Mahesha, B. Catalytic transfer hydrogenation of aromatic nitro compounds by employing ammonium formate and 5% platinum on carbon. Synth. Commun. **2000**, *30* (20), 3639–3644.
- 21. Blomberg, C.; Hartog, F.A. The barbier reaction—A one-step alternative for syntheses via organomagnesium compounds. Synthesis 1977, (1), 18–30.
- 22. Ranu, B.C.; Dutta, P.; Sarkar, A. Indium promoted reductive homocoupling of alkyl and aryl halides. Tetrahedron Lett. **1998**, 39 (57), 9557–9558.
- 23. Banik, B.K.; Suhendra, M.; Banik, I.; Becker, F.F. Indium/ammonium chloride meadiated selective reduction of aromatic nitro compounds: practical synthesis of 6-amino chrysene. Synth. Commun. **2000**, *30* (20), 3745–3754.
- Jubert, C.; Knochel, P. Preparation of new classes of aliphatic, allylic, and benzylic zinc and copper reagents by the insertion of zinc dust into organic halides, phosphates, and sulfonates. J. Org. Chem. 1992, 57 (20), 5425–5431.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Hydrazinium Monoformate

289

- 25. Zhou, J.-Y.; Chen, Z.-G.; Wu, S.-H. Tin promoted stereocontrolled intramolecular allylation of carbonyl compounds: a facile and stereoselective method for ring construction. J. Chem. Soc. Chem. Commun. **1994**, (24), 2783–2784.
- Ranu, B.C.; Majee, A.; Das, A.R. A convenient synthesis of β,γ-unsaturated ketones through zinc-mediated allylation of acid chlorides. Tetrahedron Lett. 1996, 37 (7), 1109–1112.
- 27. Ranu, B.C.; Majee, A.; Das, A.R. Facile and efficient synthesis of homoallylic alcohols using allyl bromide and commercial zinc dust. Tetrahedron Lett. **1995**, *36* (27), 4885–4888.
- 28. Meshram, H.M.; Reddy, G.S.; Reddy, M.M.; Yadav, J.S. Zinc mediated facile amide formation: application to alkyl, aryl, heterocycle, carbohydrate and amino acids. Tetrahedron Lett. **1998**, *39* (23), 4103–4106.
- 29. Yadav, J.S.; Reddy, G.S.; Reddy, M.M.; Meshram, H.M. Zinc promoted regeoselective Friedel–Crafts acylation of electron rich arenes. Synth. Commun. 1999, 28 (12), 2203–2206.
- 30. Yadav, J.S.; Reddy, G.S.; Reddy, M.M.; Meshram, H.M. Zinc promoted simple and convenient synthesis of carbamates: an easy access for amino group protection. Tetrahedron Lett. **1998**, *39* (20), 3259–3262.

Received in the UK November 15, 2001

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.