Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Orhan Büyükgüngör, a Mustafa Odabaşoğlu, b* B. Narayana, c A. M. Vijesh^c and H. S. Yathirajan^d

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006,

Correspondence e-mail: muodabas@omu.edu.tr

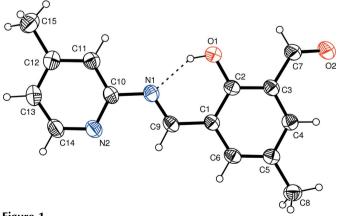
Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.032 wR factor = 0.080 Data-to-parameter ratio = 7.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*E*)-2-Hydroxy-5-methyl-3-[(4-methyl-2-pyridyl)iminomethyl]benzaldehyde

The title compound, C₁₅H₁₄N₂O₂, is stabilized in the solid state as an enol-imine tautomer, with one strong intramolecular O-H···N hydrogen bond and four C-H···O and one C-H...N intermolecular interaction that generate edge-fused $[S(6)R_2^2(8)R_2^2(8)R_5^4(32)]$ motifs. The molecule is approximately planar, with a dihedral angle of 1.72 (3)° between the two aromatic rings.


Received 16 March 2007 Accepted 19 March 2007

Comment

The present work is part of a structural study of Schiff bases (Yathirajan et al., 2007; Odabaşoğlu et al., 1999, 2004, 2005a,b, 2006; Odabaşoğlu, Albayrak, Büyükgüngör & Goesmann, 2003; Odabaşoğlu, Albayrak, Büyükgüngör & Lönnecke, 2003; Odabaşoğlu, Arslan et al., 2007; Odabaşoğlu, Büyükgüngör et al. 2007a,b) and we report here the structure of the title compound, (I) (Fig. 1, Table 1).

$$H_3C$$
 $H-O$
 CH_3
 CH_3

Compound (I) prefers the enol-imine tautomeric form. It displays a strong intramolecular hydrogen bond (Table 2) involving atoms O1 and N1, a common feature of salicylidene systems. In addition, molecules are linked through four C-

The molecular structure of (I) showing the atomic numbering scheme and with displacement ellipsoids drawn at the 30% probability level. The hydrogen bond is drawn as a dashed line.

© 2007 International Union of Crystallography All rights reserved

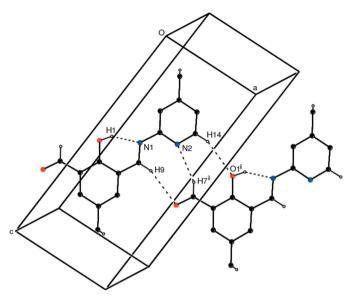


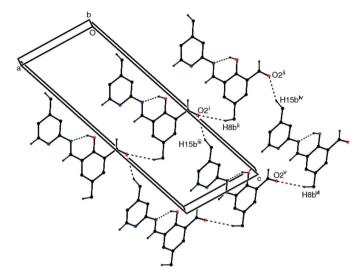
Figure 2 Part of the crystal structure of (I). For the sake of clarity, H atoms not involved in the hydrogen bonding motifs have been omitted; hydrogen bonds are drawn as dashed lines. [Symmetry code: (i) x + 1, y + 1, z.]

H···O and one C-H···N weak intermolecular interactions that generate edge-fused S(6) $R_2^2(8)$ $R_2^2(8)$ ring motifs (Fig.2). These motifs are further linked to the $R_5^4(32)$ motifs (Fig. 3) (Etter, 1990) by C8-H8B···O2 i and C15-H15B···O2 iii hydrogen bonds (Table 2). The aromatic rings are essentially coplanar with a dihedral angle of 1.72 (3) $^\circ$ between them.

Experimental

A mixture of 5-hydroxy-2-methylisophthalaldehyde (2.58 g, 0.01 mol) and 4-methylpyridin-2-amine (1.1 g, 0.01 mol) in 30 ml of absolute ethanol containing two drops of 4 M sulfuric acid was refluxed for about 4 h. On cooling, the solid that separated was filtered off and recrystallized from ethyl alcohol (m.p. 381–385 K). Analysis for $\rm C_{15}H_{14}N_2O_2$ found (calculated): C 70.74 (70.85), H 5.48 (5.55), N 10.93 (11.02)%.

Crystal data


$C_{15}H_{14}N_2O_2$	$V = 658.46 (10) \text{ Å}^3$
$M_r = 254.28$	Z = 2
Monoclinic, Pc	Mo $K\alpha$ radiation
a = 7.4936 (7) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 4.5019 (3) Å	T = 296 K
c = 20.677 (2) Å	$0.67 \times 0.42 \times 0.21 \text{ mm}$
$\beta = 109.273 \ (7)^{\circ}$	

Data collection

Stoe IPDS-II diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.954$, $T_{\max} = 0.984$ 10340 measured reflections 1303 independent reflections 1021 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.060$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	2 restraints
$wR(F^2) = 0.081$	H-atom parameters constrained
S = 0.95	$\Delta \rho_{\rm max} = 0.09 \text{ e Å}^{-3}$
1303 reflections	$\Delta \rho_{\min} = -0.09 \text{ e Å}^{-3}$
174 parameters	

Figure 3 Part of the crystal structure of (I). For the sake of clarity, H atoms not involved in the hydrogen bonding motifs have been omitted; hydrogen bonds are drawn as dashed lines. [Symmetry codes: (i) x, y + 1, z; (ii) x - 1, y + 1, z; (iii) x, 1 - y, 1 - z; (iv) x - 1, 1 - y, 1 - z; (v) x, 1 - y, $z + \frac{1}{2}$; (vi) x - 1, 1 - y, $z + \frac{1}{2}$.]

Table 1
Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
O1-H1···N1	0.82	1.84	2.576 (3)	148
$C8-H8B\cdots O2^{i}$	0.96	2.63	3.474 (4)	147
$C9-H9\cdots O2^{ii}$	0.93	2.76	3.618 (3)	153
C14−H14···O1 ⁱⁱ	0.93	2.77	3.626 (3)	153
C15 $-$ H15 $B \cdot \cdot \cdot$ O2 ⁱⁱⁱ	0.96	2.61	3.516 (4)	158
$C7-H7\cdots N2^{iv}$	0.93	2.67	3.521 (4)	152

Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y + 1, z; (iii) x, -y, $z - \frac{1}{2}$; (iv) x - 1, y - 1, z.

In the absence of significant anomalous scattering effects, 1298 Friedel pairs were merged. All carbon-bound H atoms were treated as riding on their parent atoms, with C–H = 0.93 Å for aromatic, aldehydic and imino H [$U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$] and C–H = 0.96 Å for methyl H [$U_{\rm iso}({\rm H})=1.5U_{\rm eq}({\rm C})$]. The H atom of the hydroxyl group was refined as riding, with an O–H distance of 0.82 Å and with $U_{\rm iso}({\rm H})=1.5U_{\rm eq}({\rm O})$.

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA*; data reduction: *X-RED32* (Stoe & Cie, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F.279 of the University Research Fund).

References

Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

organic papers

- Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2004). Acta Cryst. E60, 0142-0144.
- Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2005a). Acta Cryst. C61, 0240-0242.
- Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2005b). Acta Cryst. E61, 0425-0426.
- Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1094-o1096.
- Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Goesmann, H. (2003). Acta Cryst. C59, o234-o236.
- Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o616-o619.
- Odabaşoğlu, M., Arslan, F., Ölmez, H. & Büyükgüngör, O. (2007). Dyes Pigments, DYPI-2425.
- Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijeshi, A. M. & Yathirajan, H. S. (2007b). Acta Cryst. E63, o1916–o1918.
- Odabaşoğlu, M., Turgut, G. & Karaer, H. (1999). Phosphorus Sulfur Silicon, **152**, 9–25.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Yathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o1398-o1399.