Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,3-Benzodioxol-5-ylmethanol

H. S. Yathirajan,^a S. Bindya,^a M. A. Ashok,^a B. Narayana^b and Michael Bolte^{c*}

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^cInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 3 April 2007; accepted 3 April 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.087; data-to-parameter ratio = 12.8.

The title compound, $C_8H_8O_3$, is an acid-protecting group used in the synthesis of peptides and as an accelerator in polymerization reactions. Its oxidation product, piperonal (heliotropine), is used in the flavouring and perfume industries. All the non-H atoms, except the O atom of the hydroxyl group, are coplanar (r.m.s. deviation 0.028 Å). The crystal packing is stabilized by an O−H···O hydrogen bond.

Related literature

For related structures, see: Viladomat et al. (1998); Nagaraj et al. (2005); Sonar et al. (2006); Harrison et al. (2006).

For related literature, see: Allen (2002); Bruno et al. (2004); Ortiz et al. (2005); Stewart (1971).

Experimental

Crystal data

 $C_8H_8O_3$ $M_{\rm m} = 152.14$ Monoclinic, $P2_1/c$ a = 13.544 (2) Å b = 4.6718 (4) Å c = 12.6416 (19) Å $\beta = 115.437 \ (11)^{\circ}$

V = 722.35 (18) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 173 (2) K $0.42 \times 0.38 \times 0.37 \text{ mm}$ Data collection

Stoe IPDSII two-circle	1342 independent reflections
diffractometer	1221 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.024$
3862 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$ wR(F^2) = 0.088	H atoms treated by a mixture of independent and constrained
S = 1.04	refinement
1342 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
105 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1 \cdots O1^i$	0.91 (2)	1.82 (2)	2.7256 (9)	173.2 (18)
	-	-		

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON.

SB and MAA thank the University of Mysore for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2362).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.
- Harrison, W. T. A., Bindya, S., Yathirajan, H. S., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, 05293-05295.
- Nagaraj, B., Narasimhamurthy, T., Yathirajan, H. S., Nagaraja, P., Narasegowda, R. S. & Rathore, R. S. (2005). Acta Cryst. C61, 0177-0180.
- Ortiz, R. A., Lopez, D. P., Lourdes, M., Cisneros, M. L. G., Valverde, J. C. R. & Crivello, J. V. (2005). Polymer, 46, 1535-1541.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sonar, V. N., Venkataraj, M., Parkin, S. & Crooks, P. A. (2006). Acta Cryst. E62, 05742-05744.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stewart, F. H. C. (1971). Aust. J. Chem. 24, 2193-2197.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Viladomat, F., Codina, C., Bastida, J., Solans, X. & Font-Bardia, M. (1998). Acta Cryst. C54, 81-82.

supplementary materials

Acta Cryst. (2007). E63, o2349 [doi:10.1107/81600536807016480]

1,3-Benzodioxol-5-ylmethanol

H. S. Yathirajan, S. Bindya, M. A. Ashok, B. Narayana and M. Bolte

Comment

The title compound, (I), is an acid-protecting group used in the synthesis of peptides (Stewart, 1971) and as an accelerator in polymerization reactions (Ortiz *et al.*, 2005). Its oxidation product, piperonal (heliotropine) is used in the flavouring and perfume industry.

A perspective view of (I) is shown in Fig. 1. Bond lengths and angles can be regarded as normal [Cambridge Structural Database, Version 5.28, November 2006,

updated January 2007 (Allen, 2002); Mogul, Version 1.1 (Bruno *et al.*, 2004)]. All the non-H atoms of the molecule, except the hydroxyl O atom, lie in a common plane (r.m.s. deviation 0.028 Å). The hydroxyl O atom deviates by

0.529 (1) Å from this plane.

The crystal packing is stabilized by an O-H···O hydrogen bond (Table 1 and Fig. 2).

Experimental

The title compound was obtained as a gift sample from Arvee Chem Pharma, Mysore, India. X-ray quality crystals of (I) were obtained from a solution in acetonitrile after slow evaporation (m.p. 329 K).

Refinement

H atoms were found in a difference map, but those bonded to C atoms were relocated in idealised locations and refined using a riding model, with $C_{aromatic}$ —H = 0.95 Å or $C_{methylene}$ —H = 0.99 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. The hydroxyl H atom was refined freely.

Figures

Fig. 1. A perspective view of (I), with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for H atoms).

Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

1,3-Benzodioxol-5-ylmethanol

Crystal data	
C ₈ H ₈ O ₃	$F_{000} = 320$
$M_r = 152.14$	$D_{\rm x} = 1.399 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3407 reflections
a = 13.544 (2) Å	$\theta = 3.7 - 25.6^{\circ}$
b = 4.6718 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 12.6416 (19) Å	T = 173 (2) K
$\beta = 115.437 \ (11)^{\circ}$	Block, colourless
$V = 722.35 (18) \text{ Å}^3$	$0.42\times0.38\times0.37~mm$
Z = 4	

Data collection

Stoe IPDSII two-circle diffractometer	1221 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.024$
Monochromator: graphite	$\theta_{\text{max}} = 25.6^{\circ}$
T = 173(2) K	$\theta_{\min} = 3.6^{\circ}$
ω scans	$h = -16 \rightarrow 14$
Absorption correction: none	$k = -5 \rightarrow 5$
3862 measured reflections	$l = -15 \rightarrow 15$
1342 independent reflections	

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0466P)^2 + 0.1849P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.033$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.088$	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.04	$\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$

1342 reflections

Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.038 (5)

105 parameters Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map

Special details

02

O3

0.0419 (6)

0.0384(5)

0.0602(7)

0.0441 (6)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	z		$U_{\rm iso}^*/U_{\rm eq}$	
01	0.05317 (7)	0.13672 (19	0.295	543 (7)	0.0307 (3)	
H1	0.0202 (16)	0.309 (5)	0.270)9 (16)	0.064 (5)*	
O2	0.40248 (8)	0.7637 (2)	0.509	957 (8)	0.0466 (3)	
03	0.40887 (8)	0.9045 (2)	0.688	392 (8)	0.0413 (3)	
C1	0.16608 (9)	0.3348 (2)	0.491	75 (9)	0.0237 (3)	
C2	0.24400 (10)	0.4373 (3)	0.454	189 (10)	0.0278 (3)	
H2	0.2437	0.3780	0.382	29	0.033*	
C3	0.32085 (10)	0.6276 (3)	0.528	310 (10)	0.0288 (3)	
C4	0.32402 (9)	0.7128 (3)	0.634	47 (10)	0.0289 (3)	
C5	0.24944 (10)	0.6147 (3)	0.672	288 (10)	0.0313 (3)	
Н5	0.2517	0.6729	0.745	59	0.038*	
C6	0.16949 (10)	0.4234 (3)	0.598	352 (10)	0.0278 (3)	
H6	0.1161	0.3524	0.621	9	0.033*	
C7	0.07960 (10)	0.1216 (2)	0.417	79 (10)	0.0273 (3)	
H7A	0.1056	-0.0740	0.446	52	0.033*	
H7B	0.0123	0.1557	0.428	35	0.033*	
C8	0.46503 (11)	0.9200 (3)	0.615	560 (12)	0.0400 (3)	
H8A	0.5390	0.8357	0.656	54	0.048*	
H8B	0.4729	1.1221	0.597	70	0.048*	
Atomic disp	placement parameters	$(Å^2)$				
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
01	0.0408 (5)	0.0245 (5)	0.0225 (4)	0.0006 (4)	0.0095 (4)	-0.0013 (3)

0.0433(6)

0.0354 (5)

-0.0214(5)

-0.0124(4)

-0.0135(5)

-0.0105(4)

0.0235(5)

0.0104 (4)

supplementary materials

C1	0.0271 (6)	0.0186 (5)	0.0231 (5)	0.0045 (4)	0.0085 (4)	0.0038 (4)	
C2	0.0334 (6)	0.0276 (6)	0.0234 (6)	0.0013 (5)	0.0130 (5)	-0.0010 (5)	
C3	0.0274 (6)	0.0298 (6)	0.0295 (6)	0.0004 (5)	0.0125 (5)	0.0023 (5)	
C4	0.0292 (6)	0.0255 (6)	0.0250 (6)	0.0000 (5)	0.0049 (5)	-0.0016 (5)	
C5	0.0402 (7)	0.0308 (7)	0.0221 (6)	0.0018 (5)	0.0128 (5)	-0.0019 (5)	
C6	0.0328 (6)	0.0266 (6)	0.0259 (6)	0.0017 (5)	0.0145 (5)	0.0026 (4)	
C7	0.0342 (6)	0.0214 (6)	0.0238 (6)	0.0001 (5)	0.0099 (5)	0.0029 (4)	
C8	0.0344 (7)	0.0417 (8)	0.0383 (7)	-0.0099 (6)	0.0103 (6)	-0.0020 (6)	
Geometric	parameters (Å, °)						
01—C7		1.4319 (14)	C2—	-H2	0.9	500	
01—H1		0.91 (2)	С3—	-C4	1.3	854 (17)	
O2—C3		1.3799 (15)	C4—	-C5	1.3	740 (17)	
O2—C8		1.4393 (16)	С5—	-C6	1.4	072 (17)	
O3—C4		1.3845 (15)	С5—	-H5	0.9	500	
O3—C8		1.4314 (18)	С6—	-H6	0.9	500	
C1—C6		1.3935 (16)	С7—	-H7A	0.9	900	
C1—C2		1.4078 (16)	С7—	-H7B	0.9	900	
C1—C7		1.5158 (16)	C8—	-H8A	0.9	0.9900	
С2—С3		1.3794 (17)	C8—	-H8B	0.9	900	
C7—O1—H	H1	105.7 (12)	С6—	-С5—Н5	121	1.7	
С3—О2—С	28	105.65 (10)	C1-	-C6—C5	122	2.11 (11)	
C4—O3—C	28	105.61 (9)	C1-	-C6—H6	118	3.9	
C6—C1—C	22	120.13 (11)	С5—	-С6—Н6	118	3.9	
C6—C1—C	27	119.20 (10)	01–	-C7-C1	113	3.72 (9)	
C2—C1—C	27	120.65 (10)	01—	-С7—Н7А	108	3.8	
С3—С2—С	21	117.00 (10)	C1—	-С7—Н7А	108	3.8	
С3—С2—Н	12	121.5	01–	-С7—Н7В	108	3.8	
С1—С2—Н	12	121.5	C1—	-С7—Н7В	108	3.8	
С2—С3—С)2	127.73 (11)	H7A	—С7—Н7В	107	7.7	
С2—С3—С	24	122.44 (11)	03—	-C8O2	108	8.28 (10)	
O2—C3—C	24	109.82 (11)	03—	-C8—H8A	110	0.0	
C5—C4—C)3	128.27 (11)	02—	-C8—H8A	110	0.0	
С5—С4—С	23	121.74 (11)	03—	-C8—H8B	110	0.0	
O3—C4—C	23	109.98 (11)	02—	-C8—H8B	110	0.0	
C4—C5—C	26	116.58 (11)	H8A	—С8—Н8В	108	3.4	
C4—C5—H	15	121.7					
C6—C1—C	C2—C3	-0.71 (17)	02—	-C3-C4-O3	-0.	76 (14)	
C7—C1—C	С2—С3	-179.07 (10)	03—	-C4—C5—C6	178	3.68 (11)	
C1—C2—C	23—02	-177.66 (11)	С3—	-C4—C5—C6	-0.	12 (18)	
C1—C2—C	C3—C4	1.18 (18)	C2—	-C1-C6-C5	-0.	15 (18)	
C8—O2—C	C3—C2	-175.52 (13)	С7—	-C1-C6-C5	178	3.22 (10)	
C8—O2—C	C3—C4	5.52 (14)	C4—	-C5-C6-C1	0.5	7 (18)	
C8—O3—C	C4—C5	176.71 (13)	C6—	-C1C7O1	155	5.02 (10)	
C8—O3—C	C4—C3	-4.37 (14)	C2—	-C1C7O1	-20	5.61 (15)	
C2—C3—C	C4—C5	-0.78 (19)	C4—	-03	7.7	2 (14)	
02—C3—C	C4—C5	178.24 (11)	C3—	-02	-8.	18 (14)	
С2—С3—С	24—03	-179.79(11)					

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1···O1 ⁱ	0.91 (2)	1.82 (2)	2.7256 (9)	173.2 (18)
Symmetry codes: (i) $-x$, $y+1/2$, $-z+1/2$.				

Fig. 2