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Abstract
This paper is devoted to introduce new definitions of fuzzy α- open

set and new weaker forms of fuzzy α- continuous mappings. Properties
and relationship between fuzzy α- open sets and fuzzy α- continuous
mappings and other weaker form of them are investigated.
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1 Introduction

In [[8], [2]], Singal, Rajvanshi and Bin Shahna have introduced the
concept of fuzzy α− open sets. Several notions based on fuzzy α-open(closed)
sets and fuzzy α- continuous mapping have been studied. Moreover, the study
also included the relationship between those concepts and some other weaker
forms of fuzzy open sets and fuzzy continuous mappings. In this paper, we
introduce new definitions of fuzzy α- open set and new weaker forms of fuzzy
α- continuous mappings and study several properties of α− open sets and α-
continuous mappings in fuzzy setting and discuss their relations with other
weaker forms of fuzzy continuous mappings.
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2 Preliminaries

Throughout this paper by (X, τ) or simply by X we mean a fuzzy
topological space ( fts, shorty) and f : X → Y means a mapping f from a
fuzzy topological space X to a fuzzy topological space Y . If u is a fuzzy set and
p is a fuzzy singleton in X then N(p), Intu, clu, uc denote respectively, the
neighborhood system of p, the interior of u, the closure of u and complement
of u.

Now we recall some of the basic definitions in fuzzy topology.

Definition 2.1 [4] A fuzzy singleton p in X is a fuzzy set defined by:
p(x) = t, for x = x0 and p(x) = 0 otherwise, where 0 < t ≤ 1. The point p
is said to have support x0 and value t.

Definition 2.2 A fuzzy set u in a fts X is called: Fuzzy feebly open [6] (resp.
Fuzzy α−open, Fuzzy preopen, Fuzzy β−open, Fuzzy semi-preopen, Fuzzy reg-
ular open, Fuzzy semi α-open)set if there is a fuzzy open set m such that m
≤ u ≤ scl m (resp. u ≤ IntclIntu, u ≤ Intclu, u ≤ clIntclu, there exists a
fuzzy preopen set m such that m ≤ u ≤ clm, u = Intclu, there exists a fuzzy
α-open set m in X such that m ≤ u ≤ clm) where scl u is fuzzy semi closure
u, is defined by the intersection of all fuzzy semi closed sets containing u. The
family of all fuzzy α-open sets of X is denoted by FαO(X) and the family of
all fuzzy semi α-open sets of X is denoted by FSαO(X).

3 Fuzzy α-open set

In this section, we will present an equivalent definition to fuzzy α-
open set and prove many spacial properties of it. Moreover, we will explain
the relationship between different classes of fuzzy open sets by diagram.

Definition 3.1 a fuzzy α−interior of a fuzzy set u in X is denoted by:
Intαu = ∨{v : u ≤ v, v is a fuzzy α-open set }

From Definition (3.1), we can prove this proposition.

Proposition 3.2 Let X be a fts, u ≤ v ≤ X then :
(i) Intαu is a fuzzy α−open set in (X, τ).
(ii) Intαu ≤ u.
(iii) Intαu ≤ Intαv.
(iv) Intαu = Intα(Intαu).
(v) A is a fuzzy α−open set iff u = Intαu.
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Definition 3.3 A fuzzy set N in a fts X is called a fuzzy α-Neighborhood
of a point x of X iff there exists U ∈ FαO(X) such that U ≤ N and N(x) =
U(X) > 0.

The proof of the following theorem is obvious.

Theorem 3.4

• Any union (resp. intersection) of fuzzy α-open (resp. ) sets is a fuzzy
α-open (resp. fuzzy α-closed) set.

• Any finite intersection (resp. union) of fuzzy α-open (resp. fuzzy α-
closed) sets is a fuzzy α-open (resp. fuzzy α-closed) set.

Theorem 3.5 If M and N are fuzzy α-Neighborhood of x then N ∩M is also
a fuzzy α-Neighborhood of x.

Proof. Since N and M are fuzzy α-Neighborhood of x there exist G, H ∈
FαO(X) such that G ≤ N , H ≤ M , N(x) = G(X) > 0 and M(x) = H(X) >
0. Then M ∩ H ∈ FαO(X). �
Proposition 3.6 The collection of all fuzzy α-open sets (FαO(X)) is a fuzzy
Topology on X, which is finer than fts and denoted by Fτα(X).

Proof. From Theorem (3.4) and since 0x and 1x is also fuzzy α-open set in X
then FαO(X) is a fuzzy topology on X. �
Theorem 3.7 For any fuzzy subset u of fts X. u is called ” fuzzy α-open
set” if and only if there exists a fuzzy open set m such that m ≤ u ≤ int clm.

Proof. If u be a fuzzy α-open set ⇒ u ≤ int cl intu. Hence m ≤ u ≤ int clm,
where m = intu.

Converse is obvious. �
Theorem 3.8 For any fuzzy subset u of a fuzzy space X, the following prop-
erties are equivalent:

(i) v ∈ FαC(X)
(ii) cl Int cl v ≤ v
(iii) There exists a fuzzy closed set say n such that cl Intn ≤ v ≤ n

Proof.
(i) ⇒ (ii). Let v ∈ FαC(X), then vc ∈ FαO(X). Hence vc ≤ Int cl Int vc,

then cl Int clA ≤ A.
(ii) ⇒ (iii). Let cl Int clv ≤ v. Hence cl Int clv ≤ v ≤ cl v. Then there

exist a fuzzy closed set (clv) such that cl Int n ≤ v ≤ n, where n = cl v
(iii) ⇒ (i). Suppose that there exists a fuzzy closed set say n such that

cl Int n ≤ v ≤ n. It is clear that nc ≤ vc ≤ Int cl nc.
Therefore v ∈ FαC(X). �
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Theorem 3.9 Let X and Y be two topological spaces u ∈ Fτα(X) and v ∈
Fτα(Y ), then u × v ∈ Fτα(X × Y ).

Proof. Since u ≤ Int cl Int u, v ≤ Int cl Int v. Hence (u×v) ≤ Int cl Int (u×
v). Therefore u × v ∈ Fτα(X × Y ). �

Lemma 3.10 [7] Let u be a fuzzy open set in a fts, then Intclu = Sclu.

From the following Theorem, we can see fuzzy α-open set equal fuzzy feebly
open set.

Theorem 3.11 Let u fuzzy subset of a fts(X), then u is feebly open set iff
u ∈ Fτα(X)

Proof. this immediate consequence of Definition (2.4) and Lemma (3.10). �

From Definition (2.4), Theorem (3.7) and Lemma (3.10), easily imply the
following theorem.

Theorem 3.12 For any fuzzy subset of a fts X, the following properties are
equivalent:

(i) u ∈ Fτα(X)
(ii) m ≤ u ≤ Int clm, for some fuzzy open sets m.
(iii) m ≤ u ≤ Sclm, for some fuzzy open sets m.
(v) u ≤ Scl (Intu)

Proposition 3.13 Let u and v fuzzy subsets of a fts(X), u ∈ Fτα(X) and
u ≤ v ≤ Int clu, then v ∈ Fτα(X).

Proof. Since u ∈ Fτα(X), v ≤ Int clu ≤ Int cl (Int cl Intu) ≤ nt cl Intv.
This show that v ∈ Fτα(X). �

The following Diagram (1) [6] explains the relationship between dif-
ferent classes of weakly open sets
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4 Fuzzy α-continuous mapping and fuzzy α-

open ( α-closed)mapping

In this section, we will use the concepts of α-open and semi α-open
set to define some new weakly types of α-continuous (α-open) mappings. Also,
we will prove some theorems, properties about these concepts.

Definition 4.1 A mapping f : X → Y is said to be:

• Fuzzy continuous [3] if f−1(v) is fuzzy open ( fuzzy closed ) set in X for
each fuzzy open ( fuzzy closed ) set v in Y .

• Fuzzy α−continuous [8] if f−1(v) is fuzzy α−open ( fuzzy α−closed ) set
in X for each fuzzy open ( fuzzy closed ) set u in Y .

• Fuzzy semi α−continuous [6] if f−1(v) is a fuzzy semi α−open ( fuzzy
semi α−closed ) set in X for each fuzzy open ( fuzzy closed ) set v in Y .

• Fuzzy semi α�−continuous [6] if f−1(v) is a fuzzy semi α−open ( fuzzy
semi α−closed ) set in X for each fuzzy semi α−open ( fuzzy semi
α−closed ) set v in Y .

• Fuzzy semi α��−continuous [6] if f−1(v) is a fuzzy open ( closed ) set in
X for each fuzzy semi α−open ( fuzzy semi α−closed ) set v in Y .

• Fuzzy semi α-open [6] if f(u) is fuzzy semi α-open (semi α-closed) set
in Y for each fuzzy open (closed) set u in X.

• Fuzzy semi α�-open [6] if f(u) is fuzzy semi α-open (semi α-closed) set
in Y for each fuzzy semi α-open (semi α-closed) set u in X.

• Fuzzy semi α��-open [6] if f(u) is fuzzy open (closed) set in Y for each
fuzzy semi α-open (semi α-closed) set u in X

Definition 4.2 A mapping f : X → Y is said to be:

• Fuzzy α�-continuous if f−1(v) is fuzzy α-open (fuzzy α-closed) set in X
for each fuzzy α-open (fuzzy α-closed) set v in Y .

• Fuzzy α��-continuous if f−1(v) is fuzzy open (fuzzy closed) set in X for
each fuzzy α-open (fuzzy α-closed) set v in Y .

Definition 4.3 A mapping f : X → Y is said to be:

• Fuzzy α-open if f(u) is fuzzy α-open (α-closed) set in Y for each fuzzy
open (closed) set u in X.
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• Fuzzy α�-open if f(u) is fuzzy α-open (α-closed) set in Y for each fuzzy
α-open (α-closed) set u in X.

• Fuzzy α��-open if f(u) is fuzzy open (closed) set in Y for each fuzzy
α-open (α-closed) set u in X.

Theorem 4.4 If f : (X, τ) → (Y, σ) is a fuzzy open and fuzzy semi α-
continuous mapping, then f is fuzzy semi α�-continuous.

Proof. For any arbitrary v ∈ FSαO(Y ), there exists a fuzzy α-open set n in
Y such that n ≤ v ≤ cln.
Since f is fuzzy open, we have f−1(n) ≤ f−1(v) ≤ clf−1(n) and f is also fuzzy
semi α-continuous and n is open in Y , f−1(n) ∈ FSαO(X).
We obtain f−1(v) ∈ FSαO(X), then f is fuzzy semi α�-continuous. �

Proposition 4.5
(i) If f : (X, τ) → (Y, σ) is a fuzzy open, fuzzy continuous and bijective,

then f is fuzzy α�-continuous.
(ii) If f : (X, τ) → (Y, σ) is a fuzzy α�-continuous iff f : (X, τα) → (Y, σα)

is fuzzy continuous.

Proof. We only prove (1) and the other is easy to prove it.
Let v ∈ τα(X) and let fuzzy singleton p ∈ f−1(v) ⇒ f(p) ∈ v. Since v ∈ τα(Y )
therefore, there exists a fuzzy open set n in Y such that v ≤ n ≤ clIntv,
f(p) ∈ n ≤ clIntv, then p ∈ f−1(n) ≤ cl Intf−1(v).
Therefore, p ∈ Intcl Intf−1(v). Hence f−1(v) ≤ Int cl Intf−1(v).
Then f is fuzzy α�-continuous. �

Corollary 4.6
(i) If f : (X, τ) → (Y, σ) is a fuzzy open and fuzzy continuous, then f is

fuzzy α�-open mapping.
(ii) If f : (X, τ) → (Y, σ) is a fuzzy α�-open iff f : (X, τα) → (Y, σα) is

fuzzy open.

Proof. It is analogous proposition(4.5). �

The following diagram explains the relationship between different
weakly classes of α- continuous mappings
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Diagram(2)
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