A new convolution identity deducible from the remarkable formula of Ramanujana new convolution identity deducible from the remarkable formula of Ramanujan

Bhargava, S. and Somashekara, D. D. and Mamta, D. (2007) A new convolution identity deducible from the remarkable formula of Ramanujana new convolution identity deducible from the remarkable formula of Ramanujan. Taiwanese J. Math., 11 (2). pp. 399-406. ISSN 2224-6851

[img] Text (Full Text)
new convolution identity deducible.pdf - Published Version
Restricted to Registered users only

Download (58kB) | Request a copy
Official URL: https://doi.org/10.11650/twjm/1500404697

Abstract

In this paper we obtain a convolution identity for the coefficients Bn(α,θ,q) defined by ∑n=−∞∞Bn(α,θ,q)xn=∏n=1∞(1+2xqncosθ+x2q2n)∏n=1∞(1+αqnxeiθ), using the well-known Ramanujan’s 1ψ1-summation formula. The work presented here complements the works of K.-W. Yang, S. Bhargava, C. Adiga and D. D. Somashekara and of H. M. Srivastava.

Item Type: Article
Subjects: E Mathematical Science > Mathematics
Divisions: Department of > Mathematics
Depositing User: C Swapna Library Assistant
Date Deposited: 16 Sep 2019 09:43
Last Modified: 16 Sep 2019 09:43
URI: http://eprints.uni-mysore.ac.in/id/eprint/8167

Actions (login required)

View Item View Item