A generalization of chromatic index

E. Sampathkumar and G.D. Kamath
Department of Mathematics, Mysore University, Mysore-570006, India

Received 2 June 1990
Revised 24 May 1991

Abstract
Let $G = (V, E)$ be a graph and $k \geq 2$ an integer. The general chromatic index $\chi'_k(G)$ of G is the minimum order of a partition P of E such that for any set F in P every component in the subgraph $\langle F \rangle$ induced by F has size at most $k - 1$. This paper initiates a study of $\chi'_k(G)$ and generalizes some known results on chromatic index.

The purpose of this paper is to obtain a generalization of chromatic index. Compared to many generalizations of chromatic number, there exist very few generalizations of chromatic index in the literature. For example, see [2] and [3].

Let $G = (V, E)$ be a graph and $k \geq 2$ an integer. A set $F \subseteq E$ is a k-set (or k-independent set) if every component in the subgraph $\langle F \rangle$ induced by F has size at most $k - 1$. Equivalently, a set $F \subseteq E$ is k-independent if the sum of the degrees of the vertices in every component of the subgraph $\langle F \rangle$ is r, where $2 \leq r \leq 2(k - 1)$.

A partition $\{E_1, E_2, \ldots, E_r\}$ of E is an I_k-partition if each E_i is an I_k-set. An I_k-edge coloring of G is a coloring of the edges of G so that the set of all edges receiving the same color is an I_k-set. An I_k-edge coloring which uses r colors is called a (k, r)-edge coloring.

The k-chromatic index $\chi'_k = \chi'_k(G)$ of G is the minimum number of colors needed in an I_k-edge coloring of G. If $\chi'_k(G) = n$, then G is said to be (k, n)-edge chromatic. The k-edge independence number $\beta_{1k} = \beta_{1k}(G)$ of G is the maximum cardinality of an I_k-set. Clearly, if M is any independent set of edges, then M is an I_k-set for all $k \geq 2$.

We observe that $\chi'_2(G) = \chi(G)$, the chromatic index. Also $\beta_{12} = \beta_1$, the edge independence number of G. If G has size q, then $\chi'_k(G) = 1$ for all $k > q$. If $L(G)$ is the line graph of G, then

$$\chi(G) = \chi(L(G))$$

(1)

where $\chi(L(G))$ is the chromatic number of $L(G)$.

Correspondence to: E. Sampathkumar, Department of Mathematics, Mysore University, Mysore 570006, India.
The vertex analogue of $\chi_k(G)$ has been defined by Sampathkumar [5] as follows: Let $k \geq 2$ be an integer. The k-chromatic number $\chi_k(G)$ of G is the minimum order of a partition $\{V_1, V_2, \ldots, V_k\}$ of V such that every component in the subgraph $\langle V_i \rangle$ induced by V_i has order at most $k-1$. Clearly, for any graph G with size $q \geq 1$

$$\chi_k(G) = \chi_k(L(G))$$

(2)

The problem of determining the k-chromatic index for the complete graph K_p and the complete bipartite graph $K_{m,n}$ is open. However Figs. 1 and 2 will give the k-chromatic index of these graphs in some cases.

<table>
<thead>
<tr>
<th>p</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

\[\chi_k'(K_p) \]

<table>
<thead>
<tr>
<th>n</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

\[\chi_k'(K_{n,n}) \]

The vertex analogue of $\chi_k'(G)$ has been defined by Sampathkumar [5] as follows: Let $k \geq 2$ be an integer. The k-chromatic number $\chi_k'(G)$ of G is the minimum order of a partition $\{V_1, V_2, \ldots, V_k\}$ of V such that every component in the subgraph $\langle V_i \rangle$ induced by V_i has order at most $k-1$. Clearly, for any graph G with size $q \geq 1$.

$$\chi_k'(G) = \chi_k'(L(G))$$

(2)

<table>
<thead>
<tr>
<th>p</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

\[\chi_k'(K_p) \]

Also $\chi_{10}(K_7) = 3$, for $k = 10, 11$

$$\chi_k(K_7) = 2,$$ for $11 \leq k \leq 21$

$$\chi_k(K_{8,8}) = 4,$$ for $k = 10, 11$

Also $\chi_k(K_{7,7}) = 3$, for $k = 10, 11$

$$\chi_k(K_8) = 3,$$ for $10 \leq k \leq 14$

$$\chi_k(K_{n,n}) = 3,$$ for $12 \leq k \leq 16$, $n = 7, 8$.

$$\chi_k(K_{9,9}) = 3,$$ for $18 \leq k \leq 28$

$$\chi_k(K_{n,n}) = 2,$$ for $10 \leq k \leq 16$, $4 \leq n \leq 6$.

$$\chi_k(K_{9,9}) = 3,$$ for $28 \leq k \leq 36$

$$\chi_k(K_{n,n}) = 2,$$ for $17 \leq k \leq 25$, $5 \leq n \leq 8$.

$$\chi_k(K_{9,9}) = 2,$$ for $36 \leq k \leq 49$, $6 \leq n \leq 8$.

$$\chi_k(K_{9,9}) = 2,$$ for $49 \leq k \leq 64$.

Let G be a graph of order p, and $2 \leq k \leq r$. If G is a cycle, then $\chi_k(G) = 2$. We also observe that for all $2 \leq k \leq r$, an I_k-set is an I_r-set, and

$$\beta_{12} = \beta_{1k} = \beta_{1r}, \quad (3)$$

$$\chi_1 \leq \chi_k \leq \chi_2 = \chi'. \quad (4)$$
Proposition 1. For any graph $G = (V, E)$, (i) $\beta_{1k} \leq (k-1)\beta_1$, and (ii) $\chi' \leq (k-1)\chi_k$.

Proof. (i) Let $F \subseteq E$ be an I_k-set with $|F| = \beta_{1k}$. Clearly, the subgraph $\langle F \rangle$ contains at most β_1 components, and each component containing at most $k-1$ edges. Thus $|F| = \beta_{1k} \leq (k-1)\beta_1$. To establish (ii), let $\{E_1, E_2, \ldots, E_r\}$ be an I_k-partition of E with $r = \chi_k(G)$, and $\chi'(\langle E_i \rangle) = t_i$. Then $t_i \leq k-1$ for each i, and $\chi'(G) \leq \sum t_i \leq (k-1)\chi_k(G)$.

We now deduce some bounds for χ_k using (4) and the following results:
If Δ is the maximum degree of G,

$$\Delta \leq \chi' \leq \Delta + 1.$$ \hfill (5)

If G is bipartite

$$\chi = \Delta.$$ \hfill (6)

By (4), (5) and (6), we have for any graph G, if $k \geq 2$

$$\left[\frac{\Delta}{k-1} \right] \leq \chi_k \leq \Delta + 1$$ \hfill (7)

and if G is bipartite,

$$\chi_k \leq \Delta.$$ \hfill (8)

Proposition 2. For any graph G with q edges

(i) $$\frac{q}{\beta_{1k}} \leq \chi_k' \leq \frac{q}{k-1},$$

(ii) $$\frac{q}{(k-1)\beta_1} \leq \chi_k \leq \left[\frac{q - \beta_{1k}}{k-1} \right] + 1.$$

Proof. (i) Let $\{E_1, E_2, \ldots, E_r\}$ be an I_k-partition of E with $r = \chi_k$. Then $q = \Sigma |E_i| \leq r\beta_{1k}$, and the lower bound in (i) follows. The upper bound in (i) is trivial. The lower bound in (ii) follows from (i) and (3). To establish the upper bound, let $F \subseteq E$ be an I_k-set with $|F| = \beta_{1k}$. Clearly, $\chi_k(G - F) \geq \chi_k - 1$. Since $G - F$ has $q - \beta_{1k}$ edges, we have from (i),

$$\chi_k(G - F) \leq \frac{q - \beta_{1k}}{k-1}.$$

Therefore,

$$\chi_k(G) \leq \left[\frac{q - \beta_{1k}}{k-1} \right] + 1.$$ \hfill \(\Box\)
(k, n)-Critical Graphs: Let G be a graph with maximum degree Δ. Then G is chromatic-index critical (or simply, Δ-critical) if (i) G is connected, (ii) $\chi'(G) = \Delta + 1$, and (iii) $\chi'(G - e) < \chi'(G)$ for every edge e of G. For details on Δ-critical graphs, see [1] and [7]. We generalize this concept as follows:

Let $k \geq 2$ and $n \geq 2$ be integers. A graph G is (k, n)-critical if (i) G is connected, (ii) $\chi_k(G) = n$, and (iii) $\chi_k(G - e) < \chi_k(G)$ for every edge e of G.

Note that a Δ-critical graph is $(2, \Delta + 1)$-critical. For $k \geq 3$, the star $K_{1,n}$ is (k, r)-critical, if and only if, $n \equiv 1 \mod (k - 1)$, where $r = \chi_k(K_{1,n})$. The Peterson graph is $(4, 3)$-critical. This can be seen from the $(4, 3)$-colorings of the edges as in Fig. 3.

Some elementary properties of (k, n)-critical graphs are as follows.

Proposition 3. Let G be a (k, n)-critical graph. If $F \subseteq E$ is an I_k-set, then (i) $\chi_k(G - F) = n - 1$, (ii) G contains a (k, r)-critical subgraph for every r satisfying $2 < r < n$, and (iii) if u and v are adjacent vertices in G, then $\deg u + \deg v \geq n + 1$.

Proof. (i) is trivial.

(ii) For every edge e of G, $\chi_k(G - e) = n - 1$. If the graph $G - e$ is not $(k, n - 1)$-critical, we successively remove the edges from $G - e$ until we obtain a graph G' which is $(k, n - 1)$-critical. Continuing this process, we can obtain a (k, r)-critical subgraph of G for each $r, 2 \leq r \leq n$.

(iii) Clearly there exists a (k, n)-edge coloring of G such that $\{e\}$ is a color class. Let $\{e\}, E_2, E_3, \ldots, E_n$ be the color classes in such an edge coloring. The edge e should be adjacent to at least one edge in each color class $E_i, 2 \leq i \leq n$. This implies $(\deg u - 1) + (\deg v - 1) \geq n - 1$.

A graph G is (k, n)-vertex critical if $\chi_k(G) = n$ and $\chi_k(G - v) = n - 1$ for all $v \in V$. We deduce our next result using a known result.

Proposition 4 (Sampathkumar [5]). Let G be a (k, n)-vertex critical graph, $n \geq 2$. Then (i) G is $(n - 1)$-edge connected, and (ii) $\delta(G) \geq n - 1$, where $\delta(G)$ is the minimum degree of G.
A generalization of chromatic index

Clearly, \(\delta(L(G)) = \min \{ \deg u + \deg v : uv \in E \} - 2 \). Since \(\chi_k(G) = \chi_k(L(G)) \), and \(G \) is \((k, n)\)-critical \(\iff L(G) \) is \((k, n)\)-vertex critical, we deduce the following proposition from Proposition 4:

Proposition 5. Let \(G \) be a \((k, n)\)-critical graph, \(n \geq 2 \). Then (i) \(L(G) \) is \((n - 1)\)-edge connected.

Corollary 5.1. Let \(G \) be a \(\Delta \)-critical graph. Then \(L(G) \) is \(\Delta \)-edge connected.

We now present an upper bound on the number of edges in a \((k, n)\)-critical graph.

Proposition 6. Let \(d_1, d_2, \ldots, d_p \) be the degree sequence of a \((p, q)\) graph \(G \). If \(G \) is \((k, n)\)-critical then \(q \leq \frac{\sum d_i^2}{n + 1} \).

Proof. The number of edges in the line graph \(L(G) \) of \(G \) is given by \(q_L = -q + \frac{1}{2} \sum d_i^2 \). Let \(d'_1, d'_2, \ldots, d'_q \) be the degree sequences of \(L(G) \). By (ii) of Proposition 5, \(d'_i \geq \delta(L(G)) \geq n - 1 \) for each \(i \). Hence,

\[
2q_L = \sum_{i=1}^{q} d'_i \geq q(n - 1), \quad \text{and} \quad q \leq \frac{-2q + \sum d_i^2}{n + k - 3}
\]

and the result follows.

References

[3] A.J.W. Hilton, Coloring the edges of a multigraph so that each vertex has at most \(j \), or at least \(j \) edges of each color in it, J. London Math. Soc. (2) 12 (1975) 123–128.