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Abstract. The real and imaginary parts,f ��E� and f ���E� of the dispersion corrections to the for-
ward Rayleigh scattering amplitude (also called anomalous scattering factors) for the elements La,
Ce, Pr, Nd, Sm, Gd, Dy, Ho and Er, have been determined by a numerical evaluation of the dis-
persion integral that relates them through the optical theorem to the photoeffect cross-sections. The
photoeffect cross-sections are derived from the total attenuation cross-section data set experimentally
determined using high resolution high purity germanium detector in a narrow beam good geometry
set-up for these elements in the photon energy range 5 to 1332 keV and reported earlier by the au-
thors. Below 5 keV, Scofield’s photoeffect cross-sections compiled in XCOM program have been
interpolated and used. Simple formulae forf �� in terms of atomic number and energy have also been
obtained. The data cover the energy region from 6 to 85 keV and atomic numberZ from 57–68. The
results obtained are found to agree fairly well with the other available data.
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1. Introduction

Photoeffect is an important process of gamma-ray interaction below a few hundred keV.
This process has been extensively studied theoretically as well as experimentally in view
of its importance in some nuclear-physics, radiation-shielding, and astrophysical problems.
Below 100 keV, the photoeffect is a major contributor to the attenuation of the photon beam
incident on material targets.

The photoeffect cross-sectionτ is related to the dispersion correction to the forward
angle Rayleigh scattering cross-section, through the optical theorem [1]. The scattering
factor f of an isolated atom relative to that of a free electron is given by

f � f0� f �� i f ��� (1)

The first term f0 is the atomic form factor andf � and f �� are the real and imaginary
parts of dispersion corrections (also known as the anomalous scattering factors).f �� is
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related to the photoeffect cross-section through the relation based on the optical theorem [2]
given by

f �� �
E

2hcr0
σtot� (2)

wherehc � 12�398 keVÅ in practical units,r0 is the classical electron radius andE is
the energy of interest. Here, the total cross-sectionσtot is given byσtot � τ �σBBT�

σBPP, σBBT andσBPP are the photo excitation and bound pair production cross-sections
respectively. For energies sufficiently away from absorption edges of a particular element,
σBBT and σBPP are expected to be insignificant forZ � 10, below the pair production
threshold [3,4].

In the energy region of current interest, if we neglect the spin flip processes,f � and f ��

are connected by the modified Kramers–Kronig transform given by [5,6]

f ��E� � f ��∞��
2
π

P
� ∞

0

E � f ���E ��

E2
�E �2 dE �� (3)

where f ��∞� is the high-energy limit,P the Cauchy principal value of the dispersion inte-
gral andE the energy of interest. Thus, it is possible to determine the dispersion corrections
f � and f �� from a set of photoeffect cross-sections using (2) and (3).

A survey of literature on the evaluation of the dispersion corrections indicates that, right
since the first theoretical prediction of X-ray dispersion by Waller [7], there have been a
number of attempts to calculate the dispersion correctionsf � and f �� [8–10].

Calculations of f � and f �� based on Waller’s theory were made by H¨onl [11] for
hydrogen-like atoms in a non-relativistic approach. A comprehensive account of the work
done thus far is found in [12–14].

Cromer and Liberman [15] have given extensive tabulations of dispersion corrections
over a range of wavelengths commonly used by crystallographers. They used the self-
consistent field relativistic Dirac–Slater wave functions along with the inclusion of a
relativistic correction term 5/3(Etot�mc2) (high energy limit f ��∞�) in the dipole approxi-
mation.

Creagh [16] and Smith [17] pointed out that when higher order multipolar expansions
as well as retardation effects are considered, the relativistic correction becomesEtot�mc2.
Creagh and McAuley [18] have given tabulations off � and f �� which make use of this
correction term.

Kisselet al [19] have developed a computer program based on the second orderS-matrix
formalism to predict the total atom Rayleigh scattering amplitudes. Kissel and Pratt [20]
have tabulated the values of the high-energy limit, based on theS-matrix calculations, to
be added tof � and also given the values of correction to be added to the Cromer–Liberman
f � values. The values of dispersion corrections predicted by them are commensurate with
those of Creagh and McAuley [18] for very lowZ elements and are different by about 6%
to 7% forZ � 20.

Chantler [21] has provided extensive tabulations of theoretical form factor, attenuation
and scattering data for elements ofZ � 1 to 92 fromE � 1–10 eV toE � 0�4–1 MeV.
Here, the primary interactions of X-rays with isolated atoms are described and computed
within the self-consistent Dirac–Hartee–Fock framework. The relativistic correction term
used was the one calculated by Creagh and McAuley [18].

540 Pramana – J. Phys., Vol. 61, No. 3, September 2003



Anomalous scattering factors of some rare earth elements

Recently, Cullenet al [22] have provided a photon data library (EPDL97) which is
available from the IAEA on a CD-ROM. This library includes photon interaction data for
all elements with atomic number between 1 and 100 over the range 1 eV to 100 GeV.f �

and f �� values have also been provided. The relativistic correction term used was the one
calculated by Kissel and Pratt [20].

Henkeet al [6] have given tabulations of the dispersion corrections calculated for allZ in
the energy range 30 eV to 30 keV, based on a semi-empirical approach using theoretical–
experimental attenuation coefficient data base.

On the experimental side, it can be noticed that two types of techniques have been mainly
employed to determine the values off � and f ��. These are: (1) direct method and (2)
attenuation coefficient method.

The direct method has been widely used by several investigators to evaluatef � and f ��.
This method is based on (i) the measurement of the refractive index of the specimen of
interest, (ii) the determination of intensities of Bragg reflections [23] and (iii) X-ray inter-
ferometry [24] from whichf � and f �� values are calculated. The principal advantage of this
method is that it can yield absolute values off � and f ��. The main drawback is that the range
of X-ray wavelengths and atomic numbers that can be covered by this method is limited.
Also, there are problems associated with specimen dimensions and device stability.

The dispersion correctionsf � and f �� can also be evaluated by the attenuation coefficient
method. Attenuation experiments do not suffer from the problems associated with spec-
imen dimensions and device stability. Measurements can be made for a larger range of
atomic numbers over a wide range of energies [25]. This method has been employed by
several investigators [26–29] to calculatef � and f ��.

In our laboratory, Sandiagoet al [30] have evaluated the dispersion corrections for the
elements Cu and Ag. Umeshet al [31] have evaluated the dispersion corrections for the
elements Zr and Sn in the energy range 5–85 keV using the attenuation coefficient method.

In this paper, we report the dispersion corrections for some rare earth elements like
La, Ce, Pr, Nd, Sm, Gd, Dy, Ho and Er, calculated usingf �� values. Thef �� values were
evaluated from the photoeffect cross-sections using the attenuation coefficient method. The
photoeffect cross-sections were derived from the measured total attenuation cross-section
of the element by subtracting a small contribution of the sum of coherent and incoherent
scattering cross-section interpolated from the XCOM data [32] for the energy of present
interest. The total attenuation cross-sections were measured in the energy range 6 to 85
keV in a narrow beam good geometry set-up, by employing a high-resolution hyper-pure
germanium detector [33]. Beyond 85 keV, experimental data measured earlier by two of the
authors [34–37] were used. Below 6 keV, Scofield’s [38] data were used. Simple formulae
in terms ofZ andE have also been obtained, by whichf �� values can be obtained, below,
above or at theK-edge of any element in the atomic number range 57 to 68 for all energies
in the range 10–100 keV. The values off ��E� and f ���E� calculated using our experimental
values for rare earth elements are compared with other available data and discussed.

2. Experimental details

The details regarding the experimental set-up used, the method of data acquisition, analysis
and error discussion along with the calculation of the total attenuation cross-section of
these elements have been reported earlier by the authors [33–37].
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3. Results and discussion

3.1 Calculation of imaginary part of the anomalous scattering factor f ���E�

The photoeffect cross-sectionsτ of the rare earth elements were derived from the measured
total attenuation cross-section of the element by subtracting small contribution of the sum
of coherent and incoherent scattering cross-section interpolated from the XCOM data for
the energy of present interest. The values of the photoeffect cross-section were used to
calculatef ���E� from eq. (2) at each energy of interest. The variation off �� values as a
function of atomic numberZ and energyE was studied. From this, simple formulae forf ��

in terms ofZ andE were obtained. These formulae are shown in (4).

104 f �� � 1�27742E�2�303Z�3�66003�0�14067 lnE� (belowK-edge)� (4a)

102 f �� � 3�217614E�2�52178Z�2�70699�0�20188 lnE� (aboveK-edge)� (4b)

f ���Ek� � 5�42767E�0�16793
k (at K-edge)� (4c)

It was interesting to note that these formulae (eqs (4a)–(4c)), can reproducef �� values not
only below and above theK-edge but also at theK-edge energy of each element. The values
of τ and f �� are listed in tables 1 and 2 along with the other available data for comparison.
A good agreement can be observed among the respective values.

3.2 Calculation of real part of the anomalous scattering factor f ��E�

The f �� values were used to calculatef ��E� by the numerical evaluation of the dispersion
integral in (3). For this purpose, the lower limit of integration was chosen to be theMV
absorption edge and the upper limit was 1332 keV. Below 6 keV up to theMV edge, pho-
toeffect cross-section data based on XCOM were used. Above 6 keV, those values ofτ
which were reported earlier by the authors were used. To evaluate the integral numerically,
the energy region used for integration was divided into a large number of small intervals.
Within each interval�Ei�Ei�1�, the energy dependence off ��i �E�was determined by a linear
function

f ��i �E� � ai�biE� (5)

In this interval, the dispersion integral assumes the form

Ii�i�1�Es� �
2
π

P
� Ei�1

Ei

E � f ���E ��

E2
s �E �2 dE �� (6)

Mathematically, expression (6) is equivalent to

Ii�i�1�Es� ��
2
π

�
ai

2
ln

�����E
2
s �E2

i�1

E2
s �E2

i

�����
�bi

�
Ei�1�Ei�

Es

2
ln

���� �Ei�1�Es��Ei�Es�

�Ei�1�Es��Ei�Es�

����
��

� (7)

542 Pramana – J. Phys., Vol. 61, No. 3, September 2003



Anomalous scattering factors of some rare earth elements

Table 1. Photoeffect cross-sections in elements (experimental errors are to the extent
of 3–4%; all cross-sections are in 103 barn /atom).

Energy
(keV) La Ce Pr Nd Sm Gd Dy Ho Er

144.53
6.4 141.50 – – – – – – – –

140.14

78.52 85.25 90.90 96.82 – – – – –
8.041 79.46 84.80 90.27 95.81

78.48 83.91 91.80 94.85

38.14 41.18 43.98 46.91 53.21 60.13 67.63 71.65 75.83
10.53 38.90 41.55 44.37 47.32 53.66 60.53 67.52 71.19 75.05

38.41 41.07 43.79 46.63 52.78 59.49 67.20 70.42 75.86

16.39 17.63 18.86 20.15 22.94 26.02 29.35 31.15 33.02
14.4 16.80 17.99 19.26 20.57 23.38 26.47 29.78 31.53 33.35

16.23 17.45 18.72 20.06 22.86 25.85 29.06 30.83 33.03

4.00 4.27 4.58 4.92 5.64 6.44 7.31 7.78 8.27
24.14 4.06 4.36 4.68 5.01 5.74 6.53 7.40 7.87 8.35

3.99 4.29 4.59 4.92 5.64 6.43 7.29 7.76 8.27

2.04 2.16 2.33 2.50 2.88 3.30 3.76 4.01 4.27
30.8 2.06 2.22 2.38 2.55 2.93 3.35 3.80 4.04 4.30

2.03 2.16 2.18 2.51 2.89 3.30 3.92 3.99 4.27

1.42 1.51 1.62 1.75 2.02 2.32 2.65 2.82 3.01
35 1.44 1.55 1.66 1.79 2.05 2.34 2.67 2.84 3.02

1.38 1.49 1.61 1.73 2.01 2.31 2.63 2.80 3.01

2.88 3.08 3.27 3.46 3.88 4.33 0.87 0.93 1.00
52.01 2.91 3.08 3.27 3.45 3.88 4.31 0.88 0.94 1.01

2.88 3.06 3.25 3.45 3.86 4.28 0.86 0.92 1.00

1.64 1.74 1.85 1.96 2.20 2.46 2.75 2.90 3.05
64.3 1.64 1.75 1.86 1.97 2.21 2.46 2.73 2.88 3.06

1.52 1.23 1.84 1.95 2.20 2.46 2.73 2.88 3.05

1.26 1.34 1.42 1.51 1.70 1.90 2.12 2.24 2.36
70.833 1.26 1.34 1.43 1.52 1.70 1.90 2.12 2.24 2.37

1.25 1.33 1.41 1.50 1.69 1.90 2.11 2.22 2.36

1.17 1.24 1.32 1.40 1.57 1.76 1.97 2.07 2.19
72.87 1.16 1.24 1.32 1.41 1.58 1.76 1.97 2.08 2.20

1.16 1.23 1.31 1.39 1.57 1.76 1.96 2.07 2.19

0.88 0.93 0.99 1.05 1.18 1.32 1.48 1.56 1.65
81 0.88 0.93 0.99 1.05 1.18 1.33 1.49 1.57 1.65

0.86 0.92 0.98 1.05 1.18 1.32 1.48 1.56 1.65

0.79 0.83 0.88 0.94 1.06 1.19 1.33 1.40 1.48
84.3 0.78 0.83 0.88 0.94 1.06 1.19 1.33 1.41 1.48

0.77 0.83 0.88 0.94 1.06 1.19 1.33 1.40 1.48

First line: Present values, second line: XCOM values [32], third line: Chantler values [21].
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Table 2. Imaginary part of the anomalous scattering factor� f ���.

Energy
(keV) La Ce Pr Nd Sm Gd Dy Ho Er

13.638
6.4 12.836 – – – – – – – –

12.997

9.1800 9.8333 10.521 11.244
8.041 9.0314 9.6564 10.564 10.915 – – – –

9.1160 9.7154 10.344 11.002

5.7508 6.1641 6.5994 7.0573 8.0440 9.1307 10.324 10.962 11.630
10.53 5.7889 6.1891 6.5986 7.0267 7.9539 8.9645 10.127 10.612 11.233

5.8126 6.6480 6.6936 7.1387 8.0763 9.1071 10.191 10.756 11.354

3.3418 3.5848 3.8408 4.1103 4.6918 5.3330 6.0381 6.4158 6.8111
14.4 3.3453 3.5961 3.8583 4.1336 4.7119 5.3276 5.9885 6.3542 6.7231

3.4682 3.7139 3.9667 4.2428 4.8237 5.4599 6.1445 6.5049 6.8817

1.3641 1.4652 1.5717 1.6841 1.9269 2.1954 0.4912 0.6499 2.8162
24.14 1.3791 1.4809 1.5874 1.7003 1.9483 2.2201 2.5196 2.6795 2.8468

1.4122 1.5089 1.6185 1.7432 2.0025 2.2837 2.5619 2.7426 2.8995

0.8940 0.9608 1.0313 1.1057 1.2665 1.4445 1.6409 1.7463 1.8569
30.8 0.8831 0.9538 0.9625 1.1061 1.2742 1.4551 1.7255 1.7574 1.8675

0.9131 0.9795 1.0512 1.1331 1.2989 1.4883 1.6175 1.7995 1.8991

0.7163 0.7700 0.8267 0.8866 1.0162 1.1597 1.3181 0.4032 1.4924
35 0.6921 0.7474 0.8064 0.8689 1.0064 1.1555 1.3164 1.4009 1.4895

0.7210 0.7762 0.8341 0.8983 1.0338 1.1858 1.3406 1.4362 1.5176

2.1566 2.2921 2.4336 2.5813 2.8957 3.2365 0.6686 0.7124 0.7588
52.01 2.1446 2.2802 2.4196 2.5653 2.8714 3.1883 0.6362 0.6812 0.7279

2.1636 2.2943 2.4334 2.5762 2.8851 3.1996 0.6576 0.7016 0.7485

1.5019 1.5975 0.6974 1.8016 2.0239 2.2652 2.5264 2.6649 2.8087
64.3 1.3947 1.5910 1.6928 1.7980 2.0215 2.2593 2.5134 2.6475 2.7835

1.5067 1.6054 1.7071 1.8126 2.0349 2.2703 2.5203 2.6544 2.7934

1.2734 1.3549 1.4401 1.5291 1.7188 1.9249 2.1482 2.2666 2.3896
70.833 1.2643 1.3470 1.4339 1.5241 1.7154 1.9208 2.1407 2.2559 2.3738

1.2752 1.3584 1.4453 1.5358 1.7292 1.9360 2.1534 2.2678 2.3852

1.2133 1.2911 1.3724 1.4573 1.6384 1.8352 2.0485 2.1616 2.2791
72.87 1.2054 1.2844 1.3675 1.4538 1.6368 1.8334 2.0442 2.1545 2.2423

1.2131 1.2927 1.3762 1.4616 1.6474 1.8437 2.0564 2.1654 2.2753

1.0130 1.0784 1.1467 1.2181 1.3705 1.5361 1.7157 1.8110 1.9101
81 1.0016 1.0692 1.1396 1.2124 1.3668 1.5330 1.7112 1.8048 1.9017

1.0062 1.0744 1.1445 1.2183 1.3736 1.5397 1.7234 1.8162 1.9141

0.9463 1.0075 1.0715 1.1384 1.2811 1.4363 1.6047 1.6940 1.7869
84.3 0.9331 0.9965 1.0631 1.1322 1.2770 1.4324 1.6002 1.6880 1.7791

0.9391 1.0010 1.0666 1.1362 1.2837 1.4399 1.6087 1.6998 1.7897

First line: Formulae values, second line: Chantler values [21], third line: Cullen values [22].
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Table 3. Relativistic corrections (high energy limit,f ��∞� � ∆�.

∆KP ∆CM ∆CL
Element S-matrix correction Multiple correction Dipole correction

Lanthanum �0.415 �0.456 �0.753
Cerium �0.432 �0.474 �0.786
Praseodymium �0.450 �0.492 �0.819
Neodymium �0.468 �0.516 �0.854
Samarium �0.506 �0.558 �0.925
Gadolinium �0.545 �0.610 �1.000
Dysprosium �0.586 �0.648 �1.079
Holmium �0.607 �0.672 �1.119
Erbium �0.629 �0.696 �1.161

∆KP (S-matrix correction): Kissel and Pratt (KP) [20];∆CM (multipole correction): Creagh and
McAuley [18]; ∆CL (dipole correction): Cromer and Liberman [15].

Figure 1. Plot of real part of anomalous scattering factor vs. energy for lanthanum. A:
Present values with KP correction, B: present values with CM correction and C: present
values with CL correction.

Using the coefficientsai andbi, the dispersion integral (6) was calculated analytically
for each interval using (7). The integralsIs�1�s andIs�s�1 which are not defined are replaced
at once by the integralIs�1�s�1. Here,Es�1 andEs�1 are energies very close to the energy
of interestEs. The final value of the dispersion integral in (3) is obtained simply by adding
all II�I�1 values calculated using (7). From these, thef ��E� values were calculated accord-
ing to (3) for each element of interest by separately addingf ��∞� values of Cromer and
Liberman (CL) [15], Creagh and McAuley (CM) [18] and Kissel and Pratt (KP) [20]. The
values off ��∞� for each element are shown in table 3. Thef � values obtained in the case of
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Figure 2. Plot of real part of anomalous scattering factor vs. energy for cerium. A:
Present values with KP correction, B: present values with CM correction and C: present
values with CL correction.

Figure 3. Plot of real part of anomalous scattering factor vs. energy for praseody-
mium. A: Present values with KP correction, B: present values with CM correction and
C: present values with CL correction.
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Figure 4. Plot of real part of anomalous scattering factor vs. energy for neodymium.
A: Present values with KP correction, B: present values with CM correction and C:
present values with CL correction.

Figure 5. Plot of real part of anomalous scattering factor vs. energy for samarium. A:
Present values with KP correction, B: present values with CM correction and C: present
values with CL correction.
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Figure 6. Plot of real part of anomalous scattering factor vs. energy for gadolinium.
A: Present values with KP correction, B: present values with CM correction and C:
present values with CL correction.

Figure 7. Plot of real part of anomalous scattering factor vs. energy for dysprosium.
A: Present values with KP correction, B: present values with CM correction and C:
present values with CL correction.
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Figure 8. Plot of real part of anomalous scattering factor vs. energy for holmium. A:
Present values with KP correction, B: present values with CM correction and C: present
values with CL correction.

Figure 9. Plot of real part of anomalous scattering factor vs. energy for erbium. A:
Present values with KP correction, B: present values with CM correction and C: present
values with CL correction.
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the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho and Er are shown in figures 1 to 9 along with
the theoretical data of Cullenet al [22] (KP), Chantler [21] (CM) and the compiled data of
Henkeet al [6]. It can be seen from the figures that the present values off � in which CM
or KP correction is included follow the trend suggested by theory.

4. Conclusions

Based on this study, reasonable values of the dispersion correctionsf ��E� and f ���E� could
be obtained from a fairly accurate total attenuation cross-section data set measured in a
narrow beam good geometry set-up by employing a high resolution detector to detect pho-
tons emitted from radioisotopes. The present study points to the fact that within the range
of experimental errors, the real part of the dispersion corrections to which the relativistic
corrections calculated by Kissel and Pratt (S-matrix approach) or Creagh and McAuley
have been included are in better agreement withthe theoretical values. It is felt that the
simple formulae forf �� values in terms ofZ andE help in the speedier calculation off ��

below, above and at theK-edge of any element in the rangeZ � 57–68 andE � 10–100
keV to a good accuracy.
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