A Note on Radius of Starlikeness and Convexity of p - Valent Analytic Functions

S. Latha

Department of Mathematics Yuvaraja's College, University of Mysore Mysore - 570 005, India drlatha@gmail.com

D. S. Raju

Department of Mathematics Vidyavardhaka College of Engineering Mysore - 570 002, India rajudsvm@gmail.com

N. Poornima

Department of Mathematics Yuvaraja's College, University of Mysore Mysore - 570 005, India poornimn@gmail.com

Abstract. Let \mathcal{A}_p denote the class of analytic functions of the form

$$f(z) = z^{p} + \sum_{n=p+1}^{\infty} a_{n} z^{n} \quad (p \in \mathbb{N} = \{1, 2, 3, ...\})$$

defined in the unit disc $\mathcal{U} = \{z : |z| < 1\}$ and Ω denote the class of functions such that $\omega(0) = 0$ and $|\omega(z)| < 1$. Let $\mathcal{P}(A, B, p, \alpha)$ be the class of functions of the form

$$p(z) = p + \sum_{n=1}^{\infty} a_n z^n$$
 and $p(z) = \frac{p + \gamma \omega(z)}{1 + B\omega(z)}, -1 \le B < A \le 1$

where $\gamma = (p - \alpha)A + \alpha B$. In this paper, we define the class $S_q(A, B, p, \alpha)$ of functions $f(z) \in \mathcal{A}_p$ such that

$$q + \frac{zf^{(q+1)}(z)}{f^{(q)}(z)} = p(z) \quad \text{for} \quad p(z) \in \mathcal{P}(A, B, p, \alpha)$$

and radius of starlikeness and convexity of functions in this class are studied.

Mathematics Subject Classification: 30C45

Keywords: p-valent functions, Janowski class, Radius of starlikeness and Convexity and Subordination

1. INTRODUCTION

Let \mathcal{A}_p denote the class of analytic functions of the form

(1.1)
$$f(z) = z^{p} + \sum_{n=p+1}^{\infty} a_{n} z^{n}$$

defined in the unit disc $\mathcal{U} = \{z : |z| < 1\}$. Let Ω denote the class of bounded analytic functions $\omega(z)$ in \mathcal{U} satisfying the conditions $\omega(0) = 0$ and $|\omega(z)| \le 1$ ($z \in \mathcal{U}$).

For functions g(z) and G(z) analytic in \mathcal{U} , we say that g(z) is subordinate to G(z) if there exists a Schwarz function $\omega(z) \in \Omega$ such that $g(z) = G(\omega(z))$. If G(z) is univalent in \mathcal{U} , then g(z) is subordinate to G(z) if and only if g(0) = G(0) and $g(\mathcal{U}) \subset G(\mathcal{U})$.

For $-1 \leq B < A \leq 1$ and $0 \leq \alpha < p$, $\mathcal{P}(A, B, p, \alpha)$ [1] denote the class of analytic functions defined in \mathcal{U} such that

(1.2)
$$p(z) = p + \sum_{n=1}^{\infty} a_n z^n$$
 and $p(z) = \frac{p + \gamma \omega(z)}{1 + B\omega(z)}, -1 \le B < A \le 1.$

where $\gamma = (p - \alpha)A + \alpha B$. Further, $p(z) \in \mathcal{P}(A, B, p, \alpha)$ if and only if

(1.3)
$$p(z) = (p - \alpha)p_1(z) + \alpha, \quad p_1(z) \in \mathcal{P}(A, B)$$

where $\mathcal{P}(A, B)$ [3] is the Janowski class of functions $p_1(z)$ which are of the form

(1.4)
$$p_1(z) = 1 + \sum_{n=1}^{\infty} b_n z^n$$

and are analytic in \mathcal{U} , such that $p_1(z) \in \mathcal{P}(A, B)$ if and only if

(1.5)
$$p_1(z) = \frac{1 + A\omega(z)}{1 + B\omega(z)}, \ -1 \le B < A \le 1, \ \omega(z) \in \Omega, \ z \in \mathcal{U}.$$

We define the class $S_q(A, B, p, \alpha)$ of functions $f(z) \in \mathcal{A}_p$ such that

(1.6)
$$q + \frac{zf^{(q+1)}(z)}{f^{(q)}(z)} = p(z) \text{ for } p(z) \in \mathcal{P}(A, B, p, \alpha)$$

2. MAIN RESULTS

Lemma 2.1. (Jack's Lemma) [2]: Let $\omega(z)$ be a regular function in the unit disc \mathcal{U} with $\omega(0) = 0$, then if $|\omega(z)|$ attains its maximum value on the circle |z| = r at a point z_1 , we can write $z_1\omega'(z_1) = k\omega(z_1)$, where k is real and $k \ge 1$.

Lemma 2.2. The function

(2.1)
$$\omega = \begin{cases} \frac{p + \gamma z}{1 + Bz} & \text{for } B \neq 0, \\ p + \gamma z & \text{for } B = 0 \end{cases}$$

maps |z| = r onto a disc centered at C(r) and having the radius $\rho(r)$ given by

(2.2)
$$C(r) = \begin{cases} \left(\frac{p - \gamma B r^2}{1 - B^2 r^2}, 0\right) & \text{for } B \neq 0, \\ (p, 0) & \text{for } B = 0 \end{cases}$$

and

(2.3)
$$\rho(r) = \begin{cases} \frac{(\gamma - pB)r}{1 - B^2r^2} & \text{for } B \neq 0, \\ |\gamma|r & \text{for } B = 0. \end{cases}$$

Proof. Consider

$$(2.4)$$

$$\begin{cases}
\omega = \frac{p + \gamma z}{1 + Bz} \Leftrightarrow z = \frac{\omega - p}{\gamma - B\omega} \Leftrightarrow |z|^2 = r^2 = \frac{|\omega - p|^2}{|\gamma - B\omega|^2} \quad \text{for } B \neq 0 \\
\Rightarrow u^2 + v^2 + \left(\frac{2\gamma Br^2 - 2p}{1 - B^2r^2}\right)u + \frac{p^2 - \gamma^2r^2}{1 - B^2r^2} = 0, \quad \text{for } B \neq 0. \\
\omega = 1 + \gamma z \Leftrightarrow z = \frac{\omega - p}{\gamma} \Leftrightarrow |z|^2 = r^2 = \frac{|\omega - p|^2}{|\gamma|^2} \quad \text{for } B = 0 \\
\Rightarrow u^2 + v^2 - 2u + p^2 - \gamma^2r^2 = 0, \quad \text{for } B = 0.
\end{cases}$$

Lemma follows from (2.4).

Lemma 2.3. The function

(2.5)
$$\omega = \begin{cases} \frac{(\gamma - pB)z}{1 + Bz} & \text{for } B \neq 0, \\ \gamma z & \text{for } B = 0 \end{cases}$$

maps |z| = r onto a disc centered at C(r) and having the radius $\rho(r)$ given by

(2.6)
$$C(r) = \begin{cases} \left(\frac{-B(\gamma - pB)r^2}{1 - B^2r^2}, 0\right) & \text{for } B \neq 0, \\ (0, 0) & \text{for } B = 0 \end{cases}$$

and

(2.7)
$$\rho(r) = \begin{cases} \frac{(\gamma - pB)r^2}{1 - B^2 r^2} & \text{for } B \neq 0, \\ |\gamma|r & \text{for } B = 0. \end{cases}$$

Proof. Consider

$$(2.8)$$

$$\begin{cases}
\omega = \frac{(\gamma - pB)z}{1 + Bz} \iff z = \frac{\omega}{\gamma - pB - B\omega} \iff |z|^2 = r^2 = \frac{|\omega|^2}{|\gamma - pB - B\omega|^2} \quad \text{for } B \neq 0 \\
u^2 + v^2 + \left(\frac{2B(\gamma - pB)r^2}{1 - B^2r^2}\right)u + \frac{(\gamma - pB)^2r^2}{1 - B^2r^2} = 0, \quad \text{for } B \neq 0. \\
\omega = \gamma z \iff z = \frac{\omega}{\gamma} \implies |z|^2 = r^2 = \frac{|\omega|^2}{|\gamma|^2} \implies u^2 + v^2 - \gamma^2r^2 = 0 \text{ for } B = 0.
\end{cases}$$

Lemma follows from (2.8).

Theorem 2.4. Let $f(z) \in \mathcal{A}_p$ be such that

(2.9)
$$\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} - p + q \prec \begin{cases} \frac{(\gamma - pB)z}{1 + Bz} = F_1(z) & \text{for } B \neq 0, \\ \gamma z = F_2(z) & \text{for } B = 0. \end{cases}$$

Then, $f(z) \in S_q(A, B, p, \alpha)$ and this result is sharp being obtained by the function $\frac{p + \gamma z}{1 + Bz}$.

Proof. Define

(2.10)
$$\frac{f^{(q)}(z)}{z^{p-q}} = \begin{cases} (1+B\omega(z))^{\frac{(\gamma-pB)}{B}} & \text{for } B \neq 0, \\ e^{\gamma\omega(z)} & \text{for } B = 0 \end{cases}$$

where $(1 + B\omega(z))^{\frac{(\gamma-pB)}{B}}$ and $e^{\gamma\omega(z)}$ have the value at 1 at the origin. Then $\omega(z)$ is analytic in \mathcal{U} and $\omega(0) = 0$. On logarithmic differentiation we

get,

(2.11)
$$\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} - p + q \prec \begin{cases} \frac{(\gamma - pB)z\omega'(z)}{1 + B\omega(z)} & \text{for } B \neq 0, \\ \gamma z\omega'(z) & \text{for } B = 0. \end{cases}$$

Now it is easy to realize that subordination (2.9) is equivalent to $|\omega(z)| < 1$ for all $z \in \mathcal{U}$. By Jack's Lemma it follows that, there exists a point $z_1 \in \mathcal{U}$ such that

$$\frac{z_1 f^{(q+1)}(z_1)}{f^{(q)}(z_1)} - p + q \prec \begin{cases} \frac{(\gamma - pB)k\omega(z_1)}{1 + B\omega(z_1)} = F_1(\omega(z_1)) \notin F_1(\mathcal{U}) & \text{for } B \neq 0, \\ \gamma k\omega(z_1) = F_2(\omega(z_1)) \notin F_2(\mathcal{U}) & \text{for } B = 0. \end{cases}$$

This contradicts our assumption given by (2.9) and the fact that $|\omega(z)| < 1$ for all $z \in \mathcal{U}$.

By using the condition (2.11), we get

(2.13)
$$\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} + q = \begin{cases} \frac{p + \gamma\omega(z)}{1 + B\omega(z)} & \text{for } B \neq 0, \\ p + \gamma\omega(z) & \text{for } B = 0. \end{cases}$$

Now by inequality (2.13) we obtain

(2.14)
$$\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} + q \prec \begin{cases} \frac{p+\gamma z}{1+Bz} & \text{for } B \neq 0, \\ p+\gamma z & \text{for } B = 0. \end{cases}$$

By inequality (2.14) it follows that $f(z) \in S_q(A, B, p, \alpha)$.

Corollary 2.5. Let $f(z) \in S_q(A, B, p, \alpha)$. Then, f(z) can be written in the form

(2.15)
$$f_*^{(q)}(z) = \begin{cases} z^{p-q} (1+B\omega(z))^{\frac{\gamma-pB}{B}} & \text{for } B \neq 0, \\ z^{p-q} e^{\gamma \omega(z)} & \text{for } B = 0. \end{cases}$$

Theorem 2.6. The radius of starlikeness and the radius of convexity of the $S_q(A, B, p, \alpha)$ is given by

(2.16)
$$R_{sc} = \frac{2(p-q)}{(\gamma - pB) + \sqrt{(\gamma - pB)^2 + 4(p-q)\left[(\gamma - pB) + (p-q)B^2\right]}}.$$

The radius is sharp, being attained by the function

(2.17)
$$f_*^{(q)}(z) = \begin{cases} z^{p-q} (1+B\omega(z))^{\frac{\gamma-pB}{B}} & \text{for } B \neq 0, \\ z^{p-q} e^{\gamma \omega(z)} & \text{for } B = 0. \end{cases}$$

Proof. By Lemma 2.2, the set of values $\frac{zf^{(q+1)}(z)}{f^{(q)}(z)}$ is obtained which comprises the closed disc with center at C(r) and the radius $\rho(r)$, where (2.18)

$$C(r) = \frac{(p-q) - [B(\gamma - pB) + (p-q)B^2]r^2}{1 - B^2r^2} \quad \text{and} \quad \rho(r) = \frac{(\gamma - pB)r}{1 - B^2r^2}$$

Now by the definition of the class $\mathcal{S}_q(A, B, p, \alpha)$ we have,

(2.19)
$$\left| \frac{z f^{(q+1)}(z)}{f^{(q)}(z)} - C(r) \right| \le \rho(r)$$

This gives,

(2.20)

$$\Re\left(\frac{zf^{(q+1)}(z)}{f^{(q)}(z)}\right) \ge \frac{(p-q) - (\gamma - pB)r - [B(\gamma - pB) + (p-q)B^2]r^2}{1 - B^2r^2}$$

Hence for $r < R_s c$ the right hand side of the preceding inequality is positive, implying that

(2.21)
$$R_{sc} \leq \frac{2(p-q)}{(\gamma - pB) + \sqrt{(\gamma - pB)^2 + 4(p-q)\left[(\gamma - pB) + (p-q)B^2\right]}}$$

The radius is sharp, being attained by the function $f_*^{(q)}(z)$ given by (2.17).

Remark 2.7. For parametric values of A, B, p and α we get the well known results proved by Aouf, Nasr and also the results of Yasar Polatoglu.

References

- AOUF M K, On a class of p-valent starlike functions of order α, Internat. J. Math. and Math. Sci., 10(4)(1987), 733-744.
- [2] JACK I S, Functions starlike and convex of order α , J. London Math. Soc., (2)3(1971), 469 474.
- [3] JANOWSKI W, Some extremal problems for certain families of anlytic functions, I. Ann. Polon. Math., 28(1973), 298-326.
- [4] NANJUNDA RAO S and LATHA S, On linear combinations of n analytic functions, J. Ramanujan Math. Soc., 5 (1)(1990), 45 -59.
- [5] YASAR POLATOĞLU, METIN BOLCAL, ARZU SEN, and H. ESRA ÖZKAN, The radius of starlikeness *p*-valently analytic functions in the unit disc, *Turk. J. Math.*, 20(2006), 277-284.

Received: March 10, 2008