Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Z)-4-Benzylidene-3-methylisoxazol-5(4*H*)-one

Chandra,^a N. Srikantamurthy,^b S. Jeyaseelan,^c K. B. Umesha,^b K. Palani^d and M. Mahendra^a*

^aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, ^bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 005, India, ^cDepartment of Physics, St Philomena's College, Mysore, India, and ^dSER-CAT, APS, Argonne National Laboratory, Argonne, IL-60439, USA Correspondence e-mail: mahendra@physics.uni-mysore.ac.in

Received 30 September 2012; accepted 2 October 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.111; data-to-parameter ratio = 12.6.

In the title compound $C_{11}H_9NO_2$, the phenyl and isoxazole rings are almost coplanar, making a dihedral angle of 1.14 (9)°. This planarity is also assisted by an intramolecular $C-H\cdots O$ hydrogen bond between the phenyl ring and the carbonyl O atom. In the crystal, weak $C-H\cdots O$ interactions generate a layered structure parallel to the *ac* plane.

Related literature

For the biological and therapeutic importance of isoxazoles, see: Kang *et al.* (2000); Conti *et al.* (1998); Changtam *et al.* (2010); Kwon *et al.*, (1995); Abbiati *et al.* (2003). For bondlength and angle data in a related structure, see: Wolf *et al.* (1995).

0

Experimental

Crystal data C₁₁H₉NO₂

 $M_r = 187.19$

•	
organic	compounds
or guine	compounds

Monoclinic, $P2_1/n$ a = 12.144 (4) Å b = 6.734 (2) Å c = 12.333 (4) Å $\beta = 114.589$ (5)° V = 917.1 (5) Å ³	Z = 4 Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.25 \times 0.20 \text{ mm}$
Data collection	
Bruker APEXII CCD area-detector diffractometer 6722 measured reflections	1610 independent reflections 1352 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.016$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.111$ S = 1.07 1610 reflections	128 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.19$ e Å ⁻³ $\Delta \rho_{min} = -0.14$ e Å ⁻³

l able 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
C10−H10···O1	0.93	2.21	3.042 (2)	149
$C7-H7C\cdots O6^{i}$	0.96	2.61	3.297 (2)	129
$C8-H8\cdots O1^{i}$	0.93	2.72	3.574 (2)	154
$C14-H14\cdots O1^{i}$	0.93	2.68	3.526 (2)	151

Symmetry code: (i) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

MM would like to thank the University of Mysore for the award of project DV3/136/2007–2008/24.09.09.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5268).

References

- Abbiati, G., Beccalli, E. M., Broggini, G. & Zoni, C. (2003). Tetrahedron, 59, 9887–9893.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Changtam, C., Hongmanee, P. & Suksamrarn, A. (2010). *Eur. J. Med. Chem.* **45**, 4446–4457.
- Conti, P., Dallanoce, C., Amici, M. D., Micheli, C. D. & Klotz, K. N. (1998). Bioorg. Med. Chem. 6, 401–408.
- Kang, Y. Y., Shin, K. L., Yoo, K. H., Seo, K. J., Hong, C. Y., Lee, C. S., Park, S. Y., Kim, D. J. & Park, S. W. (2000). *Bioorg. Med. Chem. Lett.* 10, 95–99.
- Kwon, T., Heimann, A. S., Oriaku, E. T., Yoon, K. & Lee, H. J. (1995). J. Med. Chem. 38, 1048–1051.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. A64, 112-.
- Wolf, R., Wong, M. W., Kennard, C. H. L. & Wentrup, C. (1995). J. Am. Chem. Soc. 117, 6789–6790.

supporting information

Acta Cryst. (2012). E68, o3091 [doi:10.1107/S1600536812041311]

(Z)-4-Benzylidene-3-methylisoxazol-5(4H)-one

Chandra, N. Srikantamurthy, S. Jeyaseelan, K. B. Umesha, K. Palani and M. Mahendra

S1. Comment

Isoxazole and its derivatives represent one of the important classes of heterocyclic compounds. These derivatives are employed in the area of pharmaceuticals and demonstrate therapeutic properties such as anti-tumor (Kang *et al.*, 2000), hypoglycemic (Conti *et al.*, 1998), anti-mycobacterial (Changtam *et al.*, 2010) and anti-inflammatory activity (Kwon *et al.*, 1995). In addition, isoxazole derivatives serve as versatile building blocks in organic synthesis (Abbiati *et al.*, 2003). With this extensive background of isoxazole derivatives, we have synthesized the title compound to study its crystal structure.

In the molecular structure of the title compound (Fig. 1), the dihedral angle between the phenyl ring (C9/C10/C11/C12/C13/C14) and isoxazole ring (C1/C3/C4/N5/O6) is 1.14 (9)°. The isoxazole moiety is in a *synperiplanar* conformation with respect to the phenyl ring, as indicated by the torsion angle value of 0.5 (2)°. The bond lengths and angles agree with those reported for a related structure (Wolf *et al.*, 1995). There are no classic hydrogen bonds. In the crystal structure weak C—H…O hydrogen bonds link molecules into sheets Table 1. The packing diagram viewed down the *b* axis shows a layered stacking feature (Fig. 2).

S2. Experimental

A mixture of benzaldehyde oxime (1 mmol), ethyl acetoacetate (2 mmol) and anhydrous zinc chloride (0.1 mmol) were taken in a 10 ml round bottomed flask and contents were gradually heated to 120°C without any solvent for about one hour. After completion of the reaction (as indicated by TLC), the mixture was cooled to room temperature and methanol was added with stirring for about 30 min; the solids thus obtained were filtered and recrystallized from hot ethanol.

S3. Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C–H distances in the range of 0.93 to 0.96 Å; $U_{iso}(H) = 1.2-1.5U_{eq}(\text{carrier atom})$ for all H atoms.

Figure 1

Perspective diagram of the molecule with 50% probability displacement ellipsoids.

Figure 2

Packing diagram of the molecule viewed down the *b* axis.

(Z)-4-Benzylidene-3-methylisoxazol-5(4H)-one

Crystal data

C₁₁H₉NO₂ $M_r = 187.19$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 12.144 (4) Å b = 6.734 (2) Å c = 12.333 (4) Å $\beta = 114.589$ (5)° V = 917.1 (5) Å³ Z = 4 F(000) = 392 $D_x = 1.356 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1610 reflections $\theta = 2.0-25.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KBlock, yellow $0.30 \times 0.25 \times 0.20 \text{ mm}$ Data collection

Bruker APEXII CCD area-detector	$R_{\rm int} = 0.016$
diffractometer	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
ω and φ scans	$h = -14 \rightarrow 14$
6722 measured reflections	$k = -7 \rightarrow 7$
1610 independent reflections	$l = -14 \rightarrow 14$
1352 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(F^2) = 0.111$ S = 1.07	neighbouring sites
1610 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0548P)^2 + 0.1944P]$
128 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} < 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\text{max}} = 0.19 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{max}} = -0.14 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

<i>U</i> _{iso} */ <i>U</i> _{eq} 0.0680 (5) 0.0703 (5) 0.0632 (6) 0.0505 (6) 0.0387 (5)
0.0680 (5) 0.0703 (5) 0.0632 (6) 0.0505 (6) 0.0387 (5)
0.0703 (5) 0.0632 (6) 0.0505 (6) 0.0387 (5)
0.0632 (6) 0.0505 (6) 0.0387 (5)
).0505 (6)).0387 (5)
0.0387 (5)
X /
0.0450 (5)
0.0594 (7)
0.0392 (5)
0.0391 (5)
0.0514 (6)
0.0593 (7)
0.0556 (6)
0.0522 (6)
0.0452 (5)
0.0890*
0.0890*
).0890*
0.470*

supporting information

H10	0.41620	0.19900	0.36510	0.0620*
H11	0.52150	0.19940	0.24720	0.0710*
H12	0.55500	0.48960	0.16770	0.0670*
H13	0.48420	0.78670	0.20740	0.0630*
H14	0.37770	0.79120	0.32430	0.0540*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0942 (10)	0.0354 (7)	0.0893 (10)	0.0065 (6)	0.0529 (8)	0.0014 (6)
O6	0.1040 (11)	0.0394 (7)	0.0916 (10)	-0.0073 (7)	0.0646 (9)	0.0076 (6)
N5	0.0818 (11)	0.0514 (9)	0.0777 (11)	-0.0065 (8)	0.0544 (9)	0.0020 (8)
C2	0.0602 (10)	0.0383 (9)	0.0576 (10)	-0.0049 (8)	0.0291 (9)	0.0003 (7)
C3	0.0401 (8)	0.0349 (8)	0.0435 (8)	-0.0026 (6)	0.0197 (7)	-0.0019 (6)
C4	0.0466 (9)	0.0452 (9)	0.0490 (9)	-0.0065 (7)	0.0258 (8)	-0.0008(7)
C7	0.0701 (12)	0.0539 (11)	0.0733 (12)	0.0062 (9)	0.0488 (10)	-0.0012 (9)
C8	0.0415 (8)	0.0343 (8)	0.0443 (8)	0.0008 (6)	0.0203 (7)	-0.0021 (6)
C9	0.0387 (8)	0.0401 (8)	0.0400 (8)	-0.0011 (6)	0.0178 (7)	-0.0026 (6)
C10	0.0615 (11)	0.0394 (9)	0.0615 (10)	-0.0027 (8)	0.0339 (9)	-0.0073 (7)
C11	0.0681 (12)	0.0532 (11)	0.0706 (12)	0.0000 (9)	0.0427 (10)	-0.0172 (9)
C12	0.0555 (10)	0.0707 (12)	0.0503 (10)	-0.0019 (9)	0.0317 (8)	-0.0070 (8)
C13	0.0547 (10)	0.0566 (11)	0.0531 (10)	0.0014 (8)	0.0303 (8)	0.0088 (8)
C14	0.0480 (9)	0.0438 (9)	0.0498 (9)	0.0057 (7)	0.0263 (8)	0.0036 (7)

Geometric parameters (Å, °)

01—C2	1.203 (2)	C11—C12	1.374 (3)
O6—N5	1.446 (2)	C12—C13	1.376 (3)
O6—C2	1.367 (3)	C13—C14	1.381 (3)
N5—C4	1.284 (2)	С7—Н7А	0.9600
C2—C3	1.472 (2)	C7—H7B	0.9600
C3—C4	1.448 (2)	C7—H7C	0.9600
C3—C8	1.355 (2)	C8—H8	0.9300
C4—C7	1.480 (3)	C10—H10	0.9300
С8—С9	1.453 (2)	C11—H11	0.9300
C9—C10	1.399 (2)	C12—H12	0.9300
C9—C14	1.399 (2)	C13—H13	0.9300
C10-C11	1.379 (3)	C14—H14	0.9300
O1…C10	3.042 (2)	C13····C2 ^{vi}	3,364 (3)
06…C7 ⁱ	3.297 (3)	C13…C3 ^{vi}	3.471 (3)
O1…H10	2.2100	C14···C2 ⁱⁱⁱ	3.582 (3)
$O1 \cdots H14^{i}$	2.6800	C2…H10	2.7700
O1····H8 ⁱ	2.7200	C3…H10	2.9900
O6…H7C ⁱ	2.6100	C7…H8	2.6900
O6…H12 ⁱⁱ	2.9100	C8····H7C	3.0200
N5…H12 ⁱⁱ	2.7600	C11···H7B ^{iv}	3.0300
C2…C10	3.380 (3)	C11····H7C ⁱⁱⁱ	3.0500

C2···C14 ⁱⁱⁱ	3.582 (3)	H7A…H13 ^{vii}	2.4400
C2…C13 ^{iv}	3.364 (3)	H7B····C11 ^{vi}	3.0300
C2…C13 ⁱⁱⁱ	3.434 (3)	H7C····O6 ^v	2.6100
C3…C13 ⁱⁱⁱ	3.493 (3)	H7C…C8	3.0200
C3…C13 ^{iv}	3.471 (3)	H7C…H8	2.4600
C3····C12 ⁱⁱⁱ	3.562 (3)	H7C···C11 ⁱⁱⁱ	3.0500
C4····C12 ⁱⁱⁱ	3.408 (3)	H8…O1 ^v	2.7200
C7…O6 ^v	3.297 (3)	H8…C7	2.6900
C8…C10 ⁱⁱⁱ	3,446 (3)	H8…H7C	2.4600
C8C9 ⁱⁱⁱ	3 502 (3)	H8…H14	2.2400
C9C9 ⁱⁱⁱ	3,486(2)	H10…O1	2 2100
C9C8 ⁱⁱⁱ	3,502 (3)	H10C2	2.2100
$C10\cdots C8^{iii}$	3.302(3)	H10····C3	2.9900
C10····C2	3 380 (3)	$H12O6^{viii}$	2.9900
C10 C2	3.300(3)	1112 00 1112N5viii	2.9100
	3.042(2)		2.7000
C12 C2 ⁱⁱⁱ	5.408 (5) 2.5(2 (2)		2.4400
C12C3 ^{III}	3.562 (3)		2.6800
	3.493 (3)	H14····H8	2.2400
C13····C2 ^m	3.434 (3)		
N5 0(C2	110.0((12))	C0 C14 C12	121.00 (15)
N5	110.06 (12)	C9—C14—C13	121.09 (15)
06—N5—C4	10/.14 (16)	C4—C/—H/A	109.00
01	119.51 (14)	С4—С7—Н7В	109.00
O1—C2—C3	134.11 (18)	C4—C7—H7C	109.00
O6—C2—C3	106.38 (14)	H7A—C7—H7B	109.00
C2—C3—C4	103.52 (13)	H7A—C7—H7C	109.00
C2—C3—C8	132.98 (16)	H7B—C7—H7C	109.00
C4—C3—C8	123.48 (13)	С3—С8—Н8	113.00
N5—C4—C3	112.89 (14)	С9—С8—Н8	113.00
N5—C4—C7	119.35 (17)	C9—C10—H10	120.00
C3—C4—C7	127.76 (15)	C11—C10—H10	120.00
C3—C8—C9	133.69 (13)	C10—C11—H11	119.00
C8—C9—C10	125.46 (14)	C12—C11—H11	119.00
C8—C9—C14	116.32 (13)	C11—C12—H12	120.00
C10—C9—C14	118.22 (15)	C13—C12—H12	120.00
C9—C10—C11	119.80 (15)	C12—C13—H13	120.00
C10-C11-C12	121.27 (18)	C14—C13—H13	120.00
C11—C12—C13	119.77 (19)	C9—C14—H14	119.00
C12—C13—C14	119.85 (17)	C13—C14—H14	119.00
C2	-0.8(2)	C8—C3—C4—C7	0.9 (3)
N5-06-C2-01	-179.11 (17)	C2—C3—C4—N5	-0.07(19)
N5-06-C2-C3	0.72 (19)	C3—C8—C9—C10	-1.0(3)
06 - N5 - C4 - C3	0.5(2)	C_{3} C_{8} C_{9} C_{14}	-179.86(17)
06-N5-C4-C7	-17950(15)	C8 - C9 - C10 - C11	-179.85(17)
$06-C^2-C^3-C^4$	-0.41 (18)	C_{14} C_{9} C_{10} C_{11}	-10(3)
$01 - C^2 - C^3 - C^4$	179 4 (7)	C8 - C9 - C14 - C13	170 80 (15)
01 - 02 - 03 - 04	-18(4)	$C_{0} = C_{0} = C_{14} = C_{13}$	179.00(13)
01-02-03-08	-1.0 (4)	010-09-014-013	0.0 (2)

O6—C2—C3—C8	178.46 (17)	C9—C10—C11—C12	0.4 (3)
C2—C3—C4—C7	179.93 (17)	C10-C11-C12-C13	0.4 (3)
C8—C3—C4—N5	-179.08 (16)	C11—C12—C13—C14	-0.5 (3)
C2—C3—C8—C9	1.8 (3)	C12—C13—C14—C9	-0.1 (3)
C4—C3—C8—C9	-179.54 (16)		

Symmetry codes: (i) x, y-1, z; (ii) x-1/2, -y+1/2, z+1/2; (iii) -x+1, -y+1, -z+1; (iv) -x+1/2, y-1/2, -z+1/2; (v) x, y+1, z; (vi) -x+1/2, y+1/2, -z+1/2; (vii) x-1/2, -y+3/2, z+1/2; (viii) x+1/2, -y+1/2, z-1/2; (ix) x+1/2, -y+3/2, z-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H··· A
C10—H10…O1	0.93	2.21	3.042 (2)	149
С7—Н7 <i>С</i> …Об ^v	0.96	2.61	3.297 (2)	129
C8—H8···O1 ^v	0.93	2.72	3.574 (2)	154
C14—H14…O1 ^v	0.93	2.68	3.526 (2)	151

Symmetry code: (v) x, y+1, z.