

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nicotinaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone monohydrate

H. C. Devarajegowda,^a* Suresh Babu Vepuri,^b M. VinduVahini,^c H. D. Kavitha^d and H. K. Arunkashi^a

^aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, ^bDepartment of Pharmaceutical Chemistry, GITAM Institute of Pharmacy, GITAM University, Visakhapatnam 530045, Andhrapradesh, India, ^cDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, and ^dDepartment of Physics, Govt. Science College, Hassan 573 201, Karnataka, India Correspondence e-mail: devarajegowda@yahoo.com

Received 29 June 2010; accepted 2 August 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; Hatom completeness 96%; disorder in main residue; R factor = 0.064; wR factor = 0.169; data-to-parameter ratio = 11.3.

In the title compound, $C_{17}H_{10}F_6N_4 \cdot H_2O$, the pyridine ring is not coplanar with the quinoline ring system; the dihedral angle between the two planes is 21.3 (1)°. One of the trifluoromethyl group is disordered over two orientations with occupancies of 0.70 (1) and 0.30 (1). The water molecule is disordered over two positions with occupancies of 0.76 (1) and 0.24 (1). In the crystal, the water molecule is linked to the main molecule *via* $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, and inversionrelated pairs are linked *via* $O-H\cdots N$ hydrogen bonds. In addition, a weak $\pi-\pi$ interaction is observed between the pyridine ring and the pyridine ring of the quinoline unit, with a centroid–centroid distance of 3.650 (2) Å.

Related literature

For general background to quinolines, see: Mao *et al.* (2009); Bermudez *et al.* (2004); Jayaprakash *et al.* (2006); Andries *et al.* (2005). For related structures, see: Al-eryani *et al.* (2010); Skörska *et al.* (2005).

organic compounds

Experimental

Crystal data

$L_{17}H_{10}F_6N_4 \cdot H_2O$
$M_r = 402.31$
Aonoclinic, $C2/c$
u = 21.103 (4) Å
o = 15.120 (3) Å
= 12.537 (3) Å
$\beta = 118.633 \ (3)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: ψ scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.975$, $T_{\max} = 0.983$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$
$wR(F^2) = 0.169$
S = 1.04
3416 reflections
301 parameters
54 restraints

 $V = 3511.1 (13) Å^{3}$ Z = 8 Mo K\alpha radiation $\mu = 0.14 \text{ mm}^{-1}$ T = 295 K 0.22 \times 0.15 \times 0.12 mm

13267 measured reflections 3416 independent reflections 2309 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.26~e~\text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.25~e~\text{\AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2N \cdots O1W$ $O1W - H1W \cdots N4^{i}$ $C9 - H9 \cdots O1W$	0.88 (3) 0.83 (5) 0.93	2.04 (3) 2.06 (6) 2.42	2.914 (5) 2.855 (5) 3.331 (5)	169 (3) 163 (7) 167

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank the DST, India, for the funding under DST-FIST (Level II) for the X-ray diffraction facility at SSCU, IISc, Bangalore.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5125).

References

- Al-eryani, W. F. A., Kumari, J. S., Arunkashi, H. K., Vepuri, S. B. & Devarajegowda, H. C. (2010). Acta Cryst. E66, 01742.
- Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). *Science*, **307**, 223–227.
- Bermudez, L. E., Kolonoski, P., Seitz, L. E., Petrofsky, M., Reynolds, R., Wu, M. & Young, L. S. (2004). Antimicrob. Agents Chemother. 48, 3556–3558.
- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Jayaprakash, S., Iso, Y., Wan, B., Franzblau, S. G. & Kozikowski, A. P. (2006). *ChemMedChem.* 1, 593–597.
- Mao, J., Yuan, H., Wang, Y., Wan, B., Pieroni, M., Huang, Q., Breemen, R. B., Kozikowski, A. P. & Franzblau, S. G. (2009). J. Med. Chem. 52, 6966–6978.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Skörska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett. 16, 850–853.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2010). E66, o2237–o2238 [https://doi.org/10.1107/S1600536810030862]

Nicotinaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone monohydrate

H. C. Devarajegowda, Suresh Babu Vepuri, M. VinduVahini, H. D. Kavitha and H. K. Arunkashi

S1. Comment

2,8-Bis(trifluoromethyl)quinolin-4-yl]-(2-piperidyl)methanol (mefloquin) is a popular antimalarial drug. It also possesses important structural features required for antimicrobial activity (Mao *et al.* 2009; Bermudez *et al.* 2004; Jayaprakash *et al.* 2006). Quinoline is an essential structural unit found in mefloquin and recently developed antimycobacterial drugs (Andries *et al.* 2005). Thus, quinoline derivatives are good lead molecules to further develop drug candidates against mycobacterium tuberculosis and as antibacterial agents. On the basis of these observations we have synthesized few quinoline derivatives, in which a hydrazone group has been attached at the 4th position of the mefloquin ring system, expecting that these newly designed molecules would exhibit some antibacterial activity. The crystal structures of the mefloquine base and its salt complexes have been reported (Skörska *et al.* 2005). Earlier, we reported the crystal structure of 3,4-dimethoxybenzaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone (Al-eryani *et al.*, 2010). We report here the crystal structure of the title compound.

The asymmetric unit of the title compound contains one nicotinaldehyde [2,8-bis(trifluoromethyl)quinolin-4yl]hydrazone molecule and one water molecule (Fig. 1). The dihedral angle [21.3 (1)°] between the quinoline ring system and the pyridine ring indicates that these two systems are non coplanar.

In the crystal structure, intermolecular O—H···N, N—H···O and C—H···O hydrogen bonds (Table 1) are observed. In addition, a weak π - π interaction is observed between N4/C13–C17 pyridine ring at (-x, y, 1/2-z) and N1/C1–C5 pyridine ring of quinoline at (x,y,z), with a centroid-centroid distance of 3.650 (3) Å.

S2. Experimental

A mixture of [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazine (10 mmol) and nicotinaldehyde (10 mmol) in glacial acetic acid (50 ml) was heated at reflux for 3 h. The reaction mixture was concentrated under reduced pressure, cooled, and the obtained solid hydrazone was filtered, washed with water and cold ethanol. The crude product was purified by column chromatography. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an methanol-water solution at room temperature.

S3. Refinement

One of the trifluoromethyl group is disordered over two orientations with occupancies of 0.702 (8) and 0.298 (8). The C — F distances involving disordered F atoms were restrained to be equal and U^{ij} parameters of these atoms were restrained to an approximate isotropic behaviour. The water molecule is disordered over two positions with occupancies of 0.758 (13) and 0.242 (13); the H atoms of the major disorder component were located in a difference map and refined with O–H and H···H distances of 0.84 (2) and 1.35 (2) Å, respectively. Due to disorder of the oxygen atom in water molecule, all H atoms could not be located. The N-bound H atom was located in a difference map and refined freely. The remaining H atoms were positioned at calculated positions [C-H = 0.93 Å] and refined using a riding model with $U_{iso}(H)$

 $= 1.2 U_{eq}(C).$

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Only the major disorder components are shown. Dashed lines indicate hydrogen bonds.

F(000) = 1632

 $\theta = 1.7 - 26.0^{\circ}$

 $\mu = 0.14 \text{ mm}^{-1}$ T = 295 K

Plate, colourless $0.22 \times 0.15 \times 0.12 \text{ mm}$

 $D_{\rm x} = 1.522 \text{ Mg m}^{-3}$

Melting point: 486 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3416 reflections

Nicotinaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone monohydrate

Crystal data

C₁₇H₁₀F₆N₄·H₂O $M_r = 402.31$ Monoclinic, C2/c Hall symbol: -C 2yc a = 21.103 (4) Å b = 15.120 (3) Å c = 12.537 (3) Å $\beta = 118.633$ (3)° V = 3511.1 (13) Å³ Z = 8

Data collection

Bruker SMART CCD area-detector	13267 measured reflections
diffractometer	3416 independent reflections
Radiation source: fine-focus sealed tube	2309 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
ω and φ scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: ψ scan	$h = -26 \rightarrow 24$
(SADABS; Bruker, 2001)	$k = -18 \rightarrow 18$
$T_{\min} = 0.975, T_{\max} = 0.983$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.064$	Hydrogen site location: inferred from
$wR(F^2) = 0.169$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
3416 reflections	and constrained refinement
301 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0764P)^2 + 2.423P]$
54 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.26 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
F1A	0.5904 (2)	-0.0211 (2)	0.5513 (4)	0.0998 (17)	0.702 (8)
F2A	0.6589 (4)	-0.0445 (5)	0.4831 (7)	0.136 (3)	0.702 (8)
F3A	0.5538 (5)	-0.0032 (4)	0.3634 (5)	0.175 (4)	0.702 (8)
F1B	0.6012 (6)	-0.0127 (6)	0.3579 (8)	0.091 (3)	0.298 (8)
F2B	0.5395 (6)	0.0067 (8)	0.4374 (17)	0.130 (5)	0.298 (8)
F3B	0.6570 (7)	-0.0477 (7)	0.5238 (10)	0.110 (6)	0.298 (8)
F4	0.80847 (12)	0.08843 (14)	0.83893 (19)	0.0933 (7)	
F5	0.71855 (14)	0.12394 (18)	0.8610(2)	0.1087 (8)	
F6	0.81994 (15)	0.18889 (16)	0.96395 (17)	0.1198 (10)	
N1	0.68113 (12)	0.11985 (15)	0.6073 (2)	0.0554 (6)	
N2	0.61107 (14)	0.31173 (19)	0.3332 (2)	0.0623 (7)	
N3	0.56960 (13)	0.28345 (17)	0.2162 (2)	0.0607 (7)	
N4	0.42311 (17)	0.3601 (2)	-0.1996 (3)	0.0905 (10)	
C1	0.63497 (15)	0.10370 (18)	0.4929 (2)	0.0558 (7)	
C2	0.60955 (15)	0.16393 (18)	0.3984 (2)	0.0550 (7)	
H2	0.5766	0.1468	0.3198	0.066*	
C3	0.63410 (14)	0.24976 (18)	0.4233 (2)	0.0509 (7)	
C4	0.68355 (14)	0.27268 (18)	0.5461 (2)	0.0505 (7)	
C5	0.70505 (14)	0.20455 (17)	0.6345 (2)	0.0499 (7)	
C6	0.75344 (16)	0.22617 (19)	0.7576 (2)	0.0581 (8)	
C7	0.77952 (18)	0.3094 (2)	0.7890 (3)	0.0692 (9)	
H7	0.8118	0.3222	0.8698	0.083*	
C8	0.75865 (18)	0.3761 (2)	0.7019 (3)	0.0729 (9)	
H8	0.7769	0.4330	0.7248	0.087*	

С9	0.71174 (17)	0.35831 (19)	0.5837 (3)	0.0641 (8)	
H9	0.6980	0.4035	0.5265	0.077*	
C10	0.6071 (2)	0.0102 (2)	0.4681 (3)	0.0809 (11)	
C11	0.7746 (2)	0.1574 (2)	0.8540 (3)	0.0750 (10)	
C12	0.54235 (17)	0.3419 (2)	0.1340 (3)	0.0699 (9)	
H12	0.5489	0.4015	0.1546	0.084*	
C13	0.50072 (17)	0.3156 (2)	0.0070 (3)	0.0639 (8)	
C14	0.49612 (17)	0.2291 (2)	-0.0322 (3)	0.0662 (9)	
H14	0.5209	0.1843	0.0232	0.079*	
C15	0.45503 (19)	0.2098 (2)	-0.1525 (3)	0.0755 (10)	
H15	0.4508	0.1519	-0.1798	0.091*	
C16	0.4200 (2)	0.2770 (3)	-0.2323 (3)	0.0813 (11)	
H16	0.3926	0.2631	-0.3142	0.098*	
C17	0.4624 (2)	0.3780 (2)	-0.0816 (3)	0.0893 (12)	
H17	0.4642	0.4364	-0.0570	0.107*	
O1W	0.6581 (3)	0.4946 (2)	0.3473 (4)	0.088 (2)	0.758 (13)
H1W	0.631 (3)	0.537 (3)	0.315 (6)	0.132*	0.758 (13)
H2W	0.695 (2)	0.498 (4)	0.341 (7)	0.132*	0.758 (13)
O2W	0.6032 (15)	0.5042 (8)	0.3654 (12)	0.119 (10)	0.242 (13)
H2N	0.6237 (16)	0.368 (2)	0.345 (3)	0.065 (9)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	<i>U</i> ¹²	<i>U</i> ¹³	U^{23}
F1A	0.121 (3)	0.070 (2)	0.112 (3)	-0.0409 (19)	0.059 (3)	-0.0055 (18)
F2A	0.200 (6)	0.079 (4)	0.169 (7)	0.015 (3)	0.120 (5)	-0.009 (4)
F3A	0.186 (6)	0.087 (3)	0.093 (3)	-0.068 (4)	-0.062 (3)	0.022 (3)
F1B	0.098 (6)	0.065 (4)	0.089 (6)	-0.019 (5)	0.027 (5)	-0.040 (4)
F2B	0.117 (8)	0.105 (7)	0.198 (12)	-0.053 (5)	0.099 (8)	-0.042 (7)
F3B	0.150 (9)	0.039 (4)	0.060 (5)	-0.002(5)	-0.014 (5)	0.019 (4)
F4	0.0962 (15)	0.0700 (13)	0.0804 (14)	0.0121 (11)	0.0155 (12)	0.0131 (10)
F5	0.1159 (19)	0.126 (2)	0.0824 (15)	-0.0115 (15)	0.0462 (14)	0.0322 (13)
F6	0.156 (2)	0.0963 (16)	0.0446 (11)	-0.0156 (14)	-0.0024 (12)	0.0008 (10)
N1	0.0587 (14)	0.0482 (13)	0.0457 (13)	-0.0017 (11)	0.0141 (11)	0.0017 (10)
N2	0.0664 (17)	0.0551 (16)	0.0467 (13)	-0.0082 (12)	0.0122 (12)	0.0045 (11)
N3	0.0571 (15)	0.0648 (15)	0.0470 (13)	-0.0053 (12)	0.0144 (12)	0.0066 (11)
N4	0.098 (2)	0.087 (2)	0.0532 (16)	-0.0108 (17)	0.0094 (16)	0.0226 (16)
C1	0.0562 (17)	0.0488 (16)	0.0488 (15)	0.0003 (13)	0.0142 (13)	-0.0010 (12)
C2	0.0518 (16)	0.0546 (17)	0.0428 (14)	-0.0016 (13)	0.0099 (12)	-0.0031 (12)
C3	0.0465 (15)	0.0529 (16)	0.0458 (15)	0.0019 (12)	0.0162 (12)	0.0028 (12)
C4	0.0456 (15)	0.0509 (16)	0.0490 (15)	-0.0003 (12)	0.0178 (13)	-0.0010 (12)
C5	0.0463 (15)	0.0503 (16)	0.0455 (14)	0.0014 (12)	0.0158 (12)	0.0003 (12)
C6	0.0588 (18)	0.0577 (17)	0.0464 (15)	-0.0016 (14)	0.0160 (13)	-0.0028 (13)
C7	0.071 (2)	0.065 (2)	0.0496 (16)	-0.0067 (16)	0.0111 (15)	-0.0099 (15)
C8	0.076 (2)	0.0534 (18)	0.064 (2)	-0.0126 (16)	0.0141 (17)	-0.0098 (15)
C9	0.0663 (19)	0.0486 (17)	0.0614 (18)	-0.0040 (14)	0.0177 (15)	0.0032 (13)
C10	0.093 (3)	0.053 (2)	0.063 (2)	0.0027 (19)	0.010 (2)	-0.0039 (17)
C11	0.086 (3)	0.068 (2)	0.0471 (18)	-0.0073 (19)	0.0134 (17)	0.0009 (15)

supporting information

C12	0.071 (2)	0.0597 (19)	0.0548 (18)	-0.0084 (15)	0.0108 (16)	0.0102 (14)
C13	0.0595 (18)	0.066 (2)	0.0538 (17)	-0.0075 (14)	0.0174 (15)	0.0150 (14)
C14	0.065 (2)	0.069 (2)	0.0581 (18)	0.0049 (16)	0.0240 (16)	0.0125 (15)
C15	0.082 (2)	0.080 (2)	0.059 (2)	0.0000 (19)	0.0292 (18)	-0.0011 (17)
C16	0.080 (2)	0.100 (3)	0.0503 (18)	-0.007 (2)	0.0203 (17)	0.0073 (19)
C17	0.098 (3)	0.070 (2)	0.062 (2)	-0.014 (2)	0.0081 (19)	0.0199 (17)
O1W	0.102 (4)	0.064 (2)	0.081 (2)	-0.010 (2)	0.029 (2)	0.0169 (17)
O2W	0.18 (2)	0.062 (7)	0.093 (9)	0.001 (8)	0.047 (10)	0.014 (6)

Geometric parameters (Å, °)

F1A—C10	1.337 (5)	C4—C9	1.408 (4)
F2A—C10	1.312 (6)	C4—C5	1.419 (4)
F3A—C10	1.269 (5)	C5—C6	1.422 (4)
F1B—C10	1.370 (7)	C6—C7	1.354 (4)
F2B—C10	1.288 (8)	C6—C11	1.491 (4)
F3B—C10	1.288 (8)	C7—C8	1.394 (5)
F4—C11	1.328 (4)	С7—Н7	0.93
F5—C11	1.328 (4)	C8—C9	1.357 (4)
F6—C11	1.334 (4)	С8—Н8	0.93
N1—C1	1.314 (3)	С9—Н9	0.93
N1—C5	1.359 (3)	C12—C13	1.457 (4)
N2—C3	1.365 (4)	C12—H12	0.93
N2—N3	1.367 (3)	C13—C14	1.384 (5)
N2—H2N	0.88 (3)	C13—C17	1.385 (4)
N3—C12	1.268 (4)	C14—C15	1.363 (4)
N4—C16	1.314 (5)	C14—H14	0.93
N4—C17	1.332 (4)	C15—C16	1.368 (5)
C1—C2	1.383 (4)	С15—Н15	0.93
C1—C10	1.505 (4)	C16—H16	0.93
C2—C3	1.377 (4)	С17—Н17	0.93
C2—H2	0.93	O1W—H1W	0.83 (2)
C3—C4	1.429 (4)	O1W—H2W	0.81 (2)
C1—N1—C5	116.2 (2)	F2B—C10—F1A	63.3 (8)
C3—N2—N3	117.6 (3)	F3B—C10—F1A	77.7 (8)
C3—N2—H2N	124 (2)	F2A	100.2 (4)
N3—N2—H2N	118 (2)	F3A	46.4 (5)
C12—N3—N2	117.5 (3)	F2B—C10—F1B	97.8 (8)
C16—N4—C17	116.9 (3)	F3BC10F1B	91.8 (8)
N1—C1—C2	126.4 (3)	F2A	69.6 (6)
N1-C1-C10	114.4 (2)	F1A-C10-F1B	140.0 (5)
C2-C1-C10	119.2 (3)	F3A-C10-C1	115.4 (3)
C3—C2—C1	118.5 (2)	F2B-C10-C1	111.6 (6)
С3—С2—Н2	120.7	F3B-C10-C1	112.9 (7)
C1—C2—H2	120.7	F2A-C10-C1	110.3 (5)
N2—C3—C2	120.9 (3)	F1A-C10-C1	113.2 (3)
N2—C3—C4	120.8 (3)	F1B-C10-C1	106.5 (5)

C2—C3—C4	118.3 (2)	F4—C11—F5	105.5 (3)
C9—C4—C5	118.7 (2)	F4—C11—F6	105.0 (3)
C9—C4—C3	123.8 (3)	F5—C11—F6	106.7 (3)
C5—C4—C3	117.5 (2)	F4—C11—C6	113.9 (3)
N1—C5—C4	123.2 (2)	F5—C11—C6	112.9 (3)
N1—C5—C6	118.5 (2)	F6—C11—C6	112.1 (3)
C4—C5—C6	118.4 (3)	N3—C12—C13	120.0 (3)
C7—C6—C5	120.7(3)	N3—C12—H12	120.0
C7—C6—C11	1193(3)	C13—C12—H12	120.0
C5-C6-C11	1200(3)	C_{14} C_{13} C_{17}	1164(3)
C6-C7-C8	120.8(3)	C_{14} C_{13} C_{17}	123 3 (3)
C6-C7-H7	119.6	C_{17} C_{13} C_{12}	120.3(3)
C_{8} C_{7} H_{7}	119.6	$C_{17} = C_{13} = C_{12}$	120.5(3)
C_{0} C_{8} C_{7}	119.0 120.2(3)	$C_{15} = C_{14} = C_{15}$	119.0 (3)
$C_{2} = C_{3} = C_{1}$	120.2 (3)	$C_{13} = C_{14} = H_{14}$	120.2
C_{2}	119.9	C13 - C14 - H14	120.2
$C^{2} = C^{2} = C^{2}$	119.9	C14 - C15 - C16	119.1 (4)
C_{8}	121.2 (5)	C14—C15—H15	120.5
C8—C9—H9	119.4	C16—C15—H15	120.5
C4—C9—H9	119.4	N4	123.6 (3)
F3A—C10—F2B	51.7 (6)	N4—C16—H16	118.2
F3A—C10—F3B	122.8 (7)	С15—С16—Н16	118.2
F2B—C10—F3B	129.4 (10)	N4—C17—C13	124.5 (4)
F3A—C10—F2A	108.2 (6)	N4—C17—H17	117.8
F2B—C10—F2A	138.2 (7)	С13—С17—Н17	117.8
F3B—C10—F2A	23.7 (8)	H1W—O1W—H2W	112 (4)
F3AC10F1A	108.5 (6)		
C3—N2—N3—C12	173.2 (3)	N1-C1-C10-F3A	168.6 (8)
C5—N1—C1—C2	1.0 (5)	C2-C1-C10-F3A	-9.6 (9)
C5-N1-C1-C10	-177.1 (3)	N1-C1-C10-F2B	112.0 (9)
N1—C1—C2—C3	0.3 (5)	C2-C1-C10-F2B	-66.2 (10)
C10—C1—C2—C3	178.2 (3)	N1-C1-C10-F3B	-43.1 (9)
N3—N2—C3—C2	-7.4 (4)	C2-C1-C10-F3B	138.7 (8)
N3—N2—C3—C4	173.6 (3)	N1—C1—C10—F2A	-68.5 (5)
C1—C2—C3—N2	179.6 (3)	C2-C1-C10-F2A	113.3 (5)
C1—C2—C3—C4	-1.3 (4)	N1—C1—C10—F1A	42.9 (4)
N2—C3—C4—C9	0.1 (5)	C2-C1-C10-F1A	-135.3 (4)
C2-C3-C4-C9	-179.0(3)	N1—C1—C10—F1B	-142.3(6)
$N_2 - C_3 - C_4 - C_5$	-179.9(3)	C2-C1-C10-F1B	39.5 (7)
$C_{2} - C_{3} - C_{4} - C_{5}$	10(4)	C7-C6-C11-F4	-1202(3)
C1 - N1 - C5 - C4	-13(4)	C_{5} C_{6} C_{11} F_{4}	611(4)
C1 - N1 - C5 - C6	1.3(4) 178 2 (3)	C7 - C6 - C11 - F5	1195(4)
C9-C4-C5-N1	-1797(3)	C_{5} C_{6} C_{11} F_{5}	-591(4)
C_{3} C_{4} C_{5} N_{1}	(3)	C_{7} C_{6} C_{11} F_{6}	-1.1(5)
$C_{0} = C_{1} = C_{0} = C_{0}$	0.5 (T) 0.8 (A)	$C_{5} = C_{6} = C_{11} = F_{6}$	-1707(3)
$C_{3} = C_{4} = C_{5} = C_{6}$	-170 1 (3)	$N_2 = N_3 = C_{11} = C_{12}$	175.7(3) 176.0(3)
$C_{3} - C_{4} - C_{5} - C_{0}$	1/7.1(3) 170 1 (2)	112 - 113 - C12 - C13 N2 C12 C12 C14	-82(5)
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	1/9.1(3)	$1N_{3} - U_{12} - U_{13} - U_{14}$	-8.3(3)
U4-U3-U6-U/	-1.4 (5)	N3-C12-C13-C17	1/0.9 (4)

supporting information

N1-C5-C6-C11	-2.3 (4)	C17—C13—C14—C15	-0.3(5)
C4—C5—C6—C11	177.2 (3)	C12—C13—C14—C15	179.0 (3)
C5—C6—C7—C8	1.1 (5)	C13—C14—C15—C16	1.0 (5)
C11—C6—C7—C8	-177.5 (3)	C17—N4—C16—C15	-0.5 (6)
C6—C7—C8—C9	-0.1 (6)	C14—C15—C16—N4	-0.6 (6)
C7—C8—C9—C4	-0.5 (5)	C16—N4—C17—C13	1.3 (6)
C5—C4—C9—C8	0.1 (5)	C14—C13—C17—N4	-0.9 (6)
C3—C4—C9—C8	-180.0 (3)	C12—C13—C17—N4	179.8 (4)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	D—H…A
N2—H2 <i>N</i> …O1 <i>W</i>	0.88 (3)	2.04 (3)	2.914 (5)	169 (3)
$O1W$ — $H1W$ ··· $N4^{i}$	0.83 (5)	2.06 (6)	2.855 (5)	163 (7)
C9—H9…O1 <i>W</i>	0.93	2.42	3.331 (5)	167

Symmetry code: (i) -x+1, -y+1, -z.