
International Journal on Recent and Innovation Trends in Computing and Communication                           ISSN: 2321-8169 
Volume: 5 Issue: 2                                      57 – 67 

_______________________________________________________________________________________________ 

57 
IJRITCC | February 2017, Available @ http://www.ijritcc.org 

_______________________________________________________________________________________ 

Machine as One Player in Indian Cowry Board Game: Strategies and Analysis of 

Randomness Model for Playing 

Dr. P. Nagabhushan 

Professor, Dept. of Studies in Computer Science 

University of Mysore 

Mysore, India 

pnagabhushan@hotmail.com 

Pouyan Davoudian 

Research Scholar, Dept. of Studies in Computer Science 

University of Mysore 

Mysore, India 

pouyan.davoudian@gmail.com

 
Abstract—Cowry game is an ancient board game originated in India. It is a game of chance and strategy with the objective of moving players’ 
pieces through a specified path into a final location, according to the roll of special dice (cowry shells). This game involves decision-making 

under uncertainty and fuzziness with more than two parties; hence it can serve as an excellent example to apply methods and concepts for 

automating resource management and real-time strategic decisions. This research is aimed at evaluating the complexity of Cowry game and 

proposing heuristics and strategies that could be the basis of an adaptive artificial player to maximize its chances of winning the game. The main 

objective for considering machine as one player in Cowry game is to automate different strategies and to develop a machine player which is 

capable of real-time decision-making under interaction with live opponents. In this paper, we formulate several playing strategies and provide 

theoretical measures for comparison of these strategies. However, the main focus of this work is on analysis of playing randomly which involves 

no decision-making or intelligence. By applying this approach, we entirely concentrate on designing the game interface and validating the 

correctness of our implementation.  Furthermore, the enhanced knowledge base resulting from analyzing the performance of the random strategy 

can be used for understanding the scenarios to be taken care of while evolving other types of strategies. 

Keywords—artificial intelligence; board game; cowry shell; game theory; machine learning; probability; race game; randomness; strategy. 
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I. INTRODUCTION 

Researchers in the fields of artificial intelligence (AI) and 
machine learning have always been interested in the concept of 
how computers can learn or be programmed to do the tasks that 
humans do. As is cited in [17], tasks that are exceptionally easy 
for computers, like complicated mathematical computation and 
huge data storage, are very difficult for humans. However, 
tasks that humans do well by nature, such as carrying on a 
conversation, reasoning and problem solving, are much more 
difficult for a computer. One difficult task that AI researchers 
have been interested in for a very long time is “game playing”. 
Furthermore, one of the earliest applications of AI to computer 
games was as opponents in simulated versions of common 
board games. 

A “board game” [1] is a game that involves the movement 
of tokens or pieces round a pre-marked surface or board, in 
accordance with a set of rules. There are many categories of 
board games. “Race games” [2] are a classification of board 
games with the objective of being the first player to move all 
one’s pieces around a predefined track and into a final location. 
Race games often involve an element of chance, due to a 
randomizing device (such as dice) to determine how far to 
move pieces. 

Race games can be classified based on their ratio of luck to 
skill, as proposed by [2]. “Simple” race games such as Snakes 
and Ladders require no decisions by the players and are 
decided purely by luck. Each player is represented by only one 
piece and a single die is rolled to determine random movement 
of a player’ piece, hence the outcome of the game is decided 
mainly by chance. “Complex” race games are a combination of 
luck and skill. Players often have more than one piece to move, 
thus choices of move can put a player in advantageous 
positions. Complex race games generally retain an element of 
chance, but skill plays a greater role in determining the 
outcome. According to [2], most of modern complex race 
games such as Ludo, Parcheesi and Trouble primarily derive 
from India’s Pachisi [3] and Chaupur [4]. 

A. Indian Cowry Board Game 

Cowry game, also known as Chowka Bhara [5], is another 
race board game originating in India. It is one of the oldest 
board games extant, still being played in certain parts of India. 
There are references of this game in some ancient Indian epics 
like the “Mahabharata”. Like many such games there are 
regional variations for Cowry game and according to [5] it may 
also be called as Chowkabara, Chakaara, Chaukabara, Pagde, 
Pagdi, Katte Mane, Ashta Chemma, Daayam, Thaayam, 
Kavidikali, etc. 

It is a two to four player board game where playing pieces 
are moved according to the roll of special dice, “cowry shells” 
as shown in Fig. 1. A player wins by moving all of his pieces 
around the board and into a final location before his opponents. 
Obstacles to this objective include shared paths with opponent 
pieces, unlucky die rolls and getting hit by opponent pieces. 

Cowry game is a combination of strategy and chance (from 
throwing cowry shells). The cowry shells may decide the 
winner in a single game; however, over a series of many 
games, the stronger player will achieve a better record. 
Therefore, according to [6], records of games between players 
can be considered as a good measure of “skill” which refers to 
intelligence and real-time strategic decision-making. With each 
throw of cowry shells, players have to choose from different 
alternatives for moving their pieces and also predict probable 
counter-moves by the opponents. 

 

 

Figure 1.  Cowry Shells 
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B. Overview 

In this work, we undertake a fundamental study of Cowry 
game in order to gain a better understanding of the game and its 
complexity. The approach introduced in [24] relies on the idea 
that by analyzing the complexity of Cowry game we can show 
that it is more complex than Chess due to the presence of an 
element of chance, and is comparable to the complexity of 
Backgammon [6] or Ludo [7], which probably indicates that 
Cowry game has some strategic variety and is not a trivial 
game. 

Accordingly, we propose several types of strategies for 
Cowry game and briefly describe their features. Furthermore, 
some theoretical measures to analyze and compare the 
performance of different types of strategies are introduced. 
However, in this paper we merely explore the most basic type 
of strategy which is playing randomly. A “random strategy” is 
no strategy at all, since players move their pieces completely at 
random and hence requires no decisions by the players. The 
absence of decision-making for the players could give us the 
opportunity to concentrate entirely on the design and 
implementation of the game and to validate the correctness of 
our implementation and also to ensure that all of the game rules 
are applied properly. 

We give a theoretical analysis of the random strategy based 
on “expected number of moves” and experimental results are 
also included to verify the theoretical results. The authors        
of [24] point out that the enhanced knowledge base resulting 
from analysis of the random strategy can be used to generate 
other types of strategies and may also serve as a baseline 
comparison in our future work. In this paper, we give a brief 
explanation about implementation of the basic version of 
Cowry game which has a text-based user interface, allowing 
users to interact with the program through a command line. 
Design and implementation of the graphical user interface 
(GUI) for the game is not a part of this paper and is considered 
as a future work. 

The rest of the paper is organized as follows: In section 2, 
we briefly discuss the basics of game theory required for better 
understanding of this work, followed by the motivations for 
choosing Cowry game as well as some of its real-world 
applications. Furthermore, several related scientific supporting 
areas are classified. Section 3 gives a description of Cowry 
game and a brief summary of its rules is presented. In section 4, 
we propose several types of strategies in Cowry game, and in 
section 5, we provide a theoretical analysis of the random 
strategy. We discuss the implementation of the game and 
experimentations on the random strategy in section 6. Section 7 
describes future research directions and concludes the paper. 

II. BACKGROUND 

In this section we formally define a few important game 
theory terms required for understanding and analysis of Cowry 
game. The motivations and some real-world applications of the 
game as well as a brief classification of relevant fields of 
research are presented. 

A. Game Theory Terminology 

“Game theory” [8] is a mathematical discipline concerned 
with the analysis of strategies for dealing with competitive 
games where the outcome of a player’s choice depends on the 
actions of other players. It may have a very weak application to 
real-time computer games, but most of the terminology used in 
“turn-based strategy” games [9] is derived from it. 

This section will introduce some important terms in game 
theory and allow us to understand a turn-based AI. In the 
textbook [11], the authors explore that game theory classifies 
games according to the number of players, the kinds of goal 
those players have, and the information each player has about 
the game. 

 

 Number of Players 
Almost all the board games that inspired turn-based AI 

algorithms have only two players, as proposed by [11]. 
Therefore, most of the well-known algorithms in this field only 
consider two players in their most basic form. It might be 
possible to modify some of these algorithms to work with more 
number of players, but in general, there is no routine algorithm 
that has been used for “multi-player” games.  In a competitive 
game with two players, the strong player will usually win. 
However, the introduction of a third player doesn’t guarantee 
that the strongest player will win. 

 

 The Goal of the Game 
The ultimate goal that a player aims to achieve in most 

strategy games is to win. In a “zero-sum” game a player wins if 
all his opponents lose. As is widely cited in [11], in a zero-sum 
game it doesn’t matter if a player tries to win or if he tries to 
make his opponents lose; the outcome is the same. However, in 
a “non-zero-sum” game players could all win or all lose, thus a 
player would want to focus on his own winning, rather than his 
opponents losing. 

 

 Information 
The authors of [11] point out that in games like Chess both 

players have all the information about the state of the game. 
They know the result of every move and they can predict the 
possible options for the next moves. This type of game is called 
“perfect information”. Although a player cannot be sure which 
move his opponent will choose to make, he has complete 
knowledge of every move his opponent could possibly make 
and the effects it would have. 

Games like Backgammon, Ludo or Cowry game contain an 
element of chance such as dice. A player has no information in 
advance of his dice roll, hence cannot predict what moves he 
will be allowed to make. Similarly, he has no information what 
moves his opponent can play, because he cannot predict his 
opponent’s dice roll. This kind of game is called “imperfect 
information”. Finding the best move in such games is more 
difficult and may involve estimating probabilities by the 
opponents. 

 

 Applying Algorithms 
The most popular and advanced algorithms for turn-based 

games, as is widely cited in [11], are designed to work with 
two-player, zero-sum, perfect information games. But many 
turn-based computer games such as Cowry game are more 
complex, involving more players and imperfect information. AI 
researchers believe that it is possible to consider some of these 
algorithms in their most common form: for two-player, perfect 
information games, and then just fine-tune certain aspects of 
them to be adapted for the desired type of game. 

 

 Strategy 
According to game theory, “strategy” [10] refers to any of 

the alternatives a player can choose in a situation where the 
outcome depends not only on his own actions but also on the 
actions of other players. 
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However, as [10] point out, the concept of strategy should 
not be confused with that of a “move”. A move is defined as an 
action taken by a player at some point during the play of a 
game (e.g. in Cowry game, moving a player’s piece to a certain 
square). On the other hand, a player’s strategy is a complete 
algorithm for playing the game, determining the action the 
player will take at any stage throughout the game. 

In Cowry game, like most other board games, a player 
cannot always win by following only a single strategy 
throughout the whole game. The strategy that is used in the 
beginning of a game should be different from the strategy used 
in the end of the game. Different strategies can be applied 
based on the situation of the board, the progress of the player 
and the opponents, number of pieces in the game, etc. 

B. Motivations and Applications 

As mentioned earlier, an important application of AI in the 
gaming industry is board games. Some games such as Chess, 
Checkers or Backgammon have been solved to an extent, where 
an AI can win against expert human players. However, many 
imperfect information games with multiple players, such as 
Cowry game, have seen less development in terms of strong AI 
yet. While a great deal of research has gone into perfect 
information two-player board games, many games and most 
real-world problems involve decision-making under 
uncertainty or fuzziness with more than two parties. 

Imperfect information games such as Cowry game can have 
practical importance, including most negotiations, auctions, and 
many applications in information security and physical battles. 
At first sight, Cowry game might not seem suitable as an 
example for real-world decisions, such as business or military 
decisions. However, in the thesis [26], the author demonstrates 
that the decisions a player has to make in games such as Cowry 
game are very similar to the decisions a manager had to make 
in real-world, 

 

 Both are acting in a hostile, uncertain and fuzzy 
environment, where opponents want to get the best of 
them. 

 Both need an abstraction of reality to make a decision, 
because enumerating all possible outcomes is 
impractical. 

 
There are many situations that arise in Cowry game which 

can be mapped to real-life scenarios. For instance, there are 
many day-to-day situations in which a person wishes to achieve 
a goal, however due to lack of proper resources he may fail. 
This is the same constraint a player in Cowry game often faces 
due to unlucky die rolls or threats from opponents. 

Similarly, there are real-life situations in which a person 
may get some unexpected extra resources, however he may not 
be able to keep these resources and opportunities for a long 
time and needs to utilize them within a short time limit. The 
same scenario can be mapped to a typical Cowry game when a 
player gets lucky die rolls or eliminates an opponent piece 
which can result in additional bonus turn to play, but he is not 
permitted to save this bonus turn for future and has to play it 
immediately in his turn. 

Therefore, we may consider Cowry game as an excellent 
example to apply methods and concepts for automating timely 
resource management and real-world strategic decisions. 

C. Relevant Fields of Research 

Despite our extensive search in the literature, we could not 
find any scientific paper to tackle the problem of Cowry game. 
However, we could identify the following supporting areas and 
we believe that studying and analyzing some recent papers in 
these supporting areas could give us a solid foundation for 
solving the problem of Cowry game. Thus, we have classified 
the related work into following categories, 

 

 Perfect Information and Imperfect Information Games 
[12], [13], [14], [15] 

 Two-player and Multi-player Games [16], [17], [18] 

 Monte Carlo Methods [19], [20], [21], [22] 

 Strategies and Heuristics in AI Games [23], [24], [25] 

 Fuzzy Decision-making under Risk and Uncertainty 
[26], [27], [28] 

 
Ludo board game [7], a derivative of Pachisi [3], has been 

the topic of several research papers, one of which is particularly 
interesting for this work. In their research paper,                
Alvi & Ahmed [24] conducted a fundamental study on 
complexity analysis and playing strategies for Ludo and its 
variant race games. The article evaluated the state-space 
complexity of Ludo, and formulated and analyzed strategies 
based on some basic moves. The authors also provided an 
experimental comparison of pure and mixed versions of these 
strategies. We hereby acknowledge that some of the ideas, 
methods and analysis approaches used in our work have been 
adopted from the mentioned research paper [24], and have been 
modified to be applied for the analysis of Cowry game. 

III. GAME DESCRIPTION AND RULES 

Cowry game has several intricate rules which need to be 
followed. Although there are several variations of this game, 
the rules presented in this section are considered for our 
standard implementation. 

Cowry game normally has a 5×5 square board and four 
players, but it is also possible to increase the number of squares 
to any odd number squared (for example, 7×7 or 9×9). 
Assuming the size of the board is N×N (with N being odd), then 
each player will have N−1 pieces. In this work we have 
considered and implemented the 5×5 version of the game 
which is shown in Fig. 2. 

The outer middle squares on each side of the board are the 
starting squares for each player, and also function as “safe” 
squares. Each player starts on his own starting square and 
moves around the board in an anticlockwise direction in outer 
squares and a clockwise direction in inner squares. The path of 
each player is different because each player starts on a different 
square and moves into the inner squares at a different position 
on the board. The path for one of the players (South) is shown 
in Fig. 2 with dotted lines. 

Each player is represented by one of the colors, say, Red 
(South), Green (East), Blue (North) and Yellow (West), and has 
four pieces. Each player takes a turn to play, and turns rotate 
according to the cyclic order of players. Four cowry shells are 
used as dice (see Fig. 1). They are thrown and the number of 
shells that lie with their openings upwards indicates the number 
of squares a player should move. 
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Figure 2.  Board for Cowry Game with Safe Squares 

As demonstrated in [5], the mouth of the shell landing 
upwards is considered to be of value 1 and downwards is of 
value 0. However, if every shell shows a value of 0, then the 
value is considered to be 8. Therefore, the possible values are 
1, 2, 3, 4 and 8. Getting 4 or 8 gives the player an additional 
turn, which can continue until that player gets a number other 
than 4 or 8 (namely 1, 2, or 3). 

For example, if a player throws a 4, he will get another 
chance to throw the cowry shells. If on the second turn he 
throws a 3, then the player can move one of his pieces 4 
squares forward and one of his other pieces 3 squares forward. 
He can of course choose to move the same piece 7 squares 
forward in any order (either 4+3 or 3+4). This argument can be 
extended to the player getting 3 or more consecutive turns. 

Pieces of two different players cannot exist in the same 
square, other than a “safe” square, which are marked with an X 
in Fig. 2. For a 5×5 board this is simply the starting squares of 
each of the players and the central square of the board. 
However, for higher dimension boards, more safe squares can 
be added symmetrically across the board. 

So if a piece of Red player lands on the same square of a 
piece of Blue player, then Red player has “hit” Blue player. 
Blue player’s piece is returned to its starting square and this 
piece needs to start over. When a player hits an opponent’s 
piece, he will get an additional turn to throw the cowry shells. 

For a player’s piece to progress into the inner squares, he 
should have hit at least one of his opponent’s pieces. When one 
of the player’s pieces has hit one of the opponent’s, all his other 
pieces will be eligible to enter the inner squares too. In case a 
player cannot move any of his pieces because he has not hit any 
of his opponent’s, the player will lose that turn. However, it 
should be mentioned that forfeiting the turn voluntarily is not 
allowed in Cowry game (unlike Pachisi [3]). 

The goal (central square) can only be reached by a direct 
throw. If a player throws a number larger than that needed to 
reach the goal, he must move another piece or wait till his next 
turn. For example, if a piece is 3 squares away from the goal 
and the player throws a 4, then that piece cannot be moved. If 
that is the only piece left for the player to move, the player will 
lose his turn. 

It is possible for a player to have two of his pieces in the 
same square, as is described in [5]. This is called a “double”. 
There are some specific rules regarding doubles. For instance, 
it is not possible for a single piece to hit a double, or a player 
cannot move past an opponent’s double for one move. 
However, in this paper for the sake of simplicity we have not 
considered the concept of “doubles” for implementation and 
analysis of the basic version of the game. 

IV. STRATEGIES 

As with any game, an interesting question from the point of 
view of formal analysis is to determine strategies for playing 
that are likely to win the game. In Cowry game, after a player 
has thrown the cowry shells in his move, he has four options to 
move his pieces. Therefore, the game-tree branching factor for 
Cowry game is 20 corresponding to 4 pieces × 5 possible 
cowry shell values for each player. In this section we introduce 
several strategies that a player may choose during the game. 

It may be relevant to mention here that the types of moves 
and strategies applied in most race board games are almost 
similar. As an example, Alvi & Ahmed [24] give pretty 
straightforward definitions of different moves and strategies in 
their research work on analysis of Ludo board game, which are 
also applicable for analysis of Cowry game. We hereby 
acknowledge that some of the following strategies are partially 
adopted from their research work [24]. 

A. Random 

In a “random strategy”, a player chooses to play his pieces 
completely at random during the entire game. A player may try 
random moves in situations that he cannot see any advantage in 
moving a particular piece. As proposed by [24], although 
playing randomly is the most disadvantageous strategy and has 
little usefulness for winning games, it can be used as a 
benchmark to compare performance of other strategies. 

Since the random strategy has absolutely no pattern for 
playing, it would be impossible to anticipate the next move of a 
player who is playing randomly. Therefore, this strategy may 
sometimes be used by expert players in certain stages of the 
game to confuse their opponents. We believe that the same 
approach can be employed while designing advanced AI 
players to confuse their opponents, especially when other AI 
players are trying to use machine learning approaches to detect 
their strategy. 

B. Aggressive 

An “aggressive strategy” is based on a preference for 
moving a piece which can attack and hit the piece of another 
player whenever possible throughout the game. However, an 
aggressive move is not just limited to elimination of an 
opponent piece, but also to chase opponent pieces in an attempt 
to cause threat and panic for other opponents. The authors       
of [24] point out that an aggressive move, if leads to hit a piece, 
gives a definite advantage to the aggressive player over the 
attacked player in the sense that the eliminated piece has to be 
returned to its starting square and start over. The aggressive 
player will also get an additional turn to throw the cowry shells. 

C. Defensive 

In a “defensive strategy”, a player shows a strong tendency 
to move his pieces into safe squares and keep them away from 
the danger of an impending attack or elimination during the 
entire game. However, the idea of being in danger of 
elimination needs elaboration, as is cited in [24]. 

Blue 

(North)

Safe 

Squares

Yellow 

(West)

Green 

(East)

Red 

(South)
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We can propose that in Cowry game, based on the 
probability of occurrence for different cowry values (see Table 
I) obtained empirically in the thesis [33], a piece is in danger of 
being eliminated when it is 1, 2 or 3 squares away from an 
opponent piece chasing it. This distance can be called as a 
“danger zone”. Therefore, in a defensive strategy, a player 
always moves his piece if it is within the danger zone of an 
opponent piece, and prefers to move it into a safe square 
whenever possible. 

The strength of a defensive strategy, if successful, is in 
minimizing the number of times the player pieces are being 
eliminated and sent back, which gives an advantage to the 
player against all opponents in terms of the minimum number 
of moves required to finish the game. 

D. Move-first 

A “move-first strategy” gives preference to move the 
foremost piece. In other words, a player always chooses to play 
a piece which has moved the maximum number of squares in 
its path around the board. This strategy is based on the idea that 
the loss of a piece that has advanced the most in the game (i.e. 
the first piece) would be the most expensive for a player in 
terms of the additional number of moves required, hence it 
must be moved first and sent to the final location. 

The work [24] has been stated that a move-first strategy 
simply alters the arrangement of a player’s pieces throughout 
the game and therefore may not offer any significant advantage 
over other players. However, the fact that a player always 
moves the most advanced piece can result in moving only one 
piece at a time and preferably keeping other pieces in safe 
squares, which in turns can reduce the risk of piece elimination. 

E. Move-last 

In a “move-last strategy” high priority is given to move the 
hindmost piece, that is, a player prefers to play the piece which 
has moved the minimum number of squares from its starting 
square. This strategy can result in a “balanced” movement of 
all pieces, keeping all of a player’s pieces close to each other 
and moving them together as a colony. 

A move-last strategy may give an advantage to a player in 
the sense that a cautious opponent prefers not to chase or hit a 
piece which is moving in a colony, because such an attempt 
could put his own piece in danger of elimination by other 
members of the colony. 

F. Mixed 

As mentioned earlier, in most strategic board games, a 
player cannot always win by following a single strategy 
throughout the entire game. The approach introduced in [24] 
relies on the idea that it could be advantageous if a player 
chooses to play different types of moves at different stages in 
the game. Certain types of moves might be preferable 
according to the situation of the board, the progress of the 
player and the opponents, number of pieces in the game, etc. 
For example, a player may play any combination of defensive, 
aggressive, move-first, move-last and random moves, which 
could result in a “mixed strategy”. 

TABLE I.  PROBABILITY OF OCCURRENCE OF COWRY VALUES 

Cowry Values 1 2 3 4 8 

Probability of 
Occurrence 

24.3 % 38.1 % 23.6 % 7.4 % 6.6 % 

 

V. ANALYSIS 

In this section we introduce a theoretical approach for 
analysis and comparison of different strategies. The work [24] 
has opened up the issue that by using “expected values” of 
cowry shells and “average piece movement” over a large 
number of games, we can have a measure to analyze the 
performance of different strategies. 

A. Assumptions 

In Cowry game we consider all pieces of a player to be 
identical, since unlike Chess, there is no difference between 
pieces of the same player. Therefore, a board setting in which a 
player’s pieces are on locations (4, 1, 3, 7) is identical to 
another setting in which same player’s pieces are on locations 
(7, 3, 4, 1). 

For the purpose of analysis, we assume that each player 
plays a single throw of cowry shells during his turn in the 
game. Hence, a “move” is defined as the movement of a 
player’s piece resulting from a single throw of cowry shells. 
However, in an actual Cowry game, a player will get an 
additional turn to throw the cowry shells if he gets 4 or 8 or if 
he hits an opponent’s piece. These additional turns are not 
considered in the following theoretical analysis. 

In an actual Cowry game with four players, after one player 
wins the game, other players will continue playing to identify 
the second and third winners as well. In such situations, the 
remaining players often need to change their strategies in order 
to become second or third winners, because removing the first 
winner with four pieces from the game could indicate less 
threats, more safe space, and easier decisions for other players. 
However, since the aim of this paper is to analyze the 
performance of the random strategy and all four AI players are 
using the same strategy, it would be redundant to continue the 
game after the first winner is identified. Hence, we stop the 
game as soon as one player wins and we perform our statistical 
analysis based on the movements of the same winner. 

Due to non-symmetrical shape of cowry shells (see Fig. 1), 
the probability of occurrence for different cowry values (1, 2, 3, 
4 or 8) is not equal. Therefore, in the thesis [33], we tried to 
estimate the empirical probability of occurrence for each value. 
The result for this experimental observation is given in Table I. 
It is clear that the obtained probability distribution is not 
uniform. A more detailed explanation on non-uniform random 
number generation appears in the Appendix. 

B. Types of Randomness 

As discussed earlier, the main theme of our current paper is 
to analyze the performance of randomness as a model for 
playing.  It is worth mentioning that we could identify three 
types of randomness in the game, 

 

1) Randomness due to throw of cowry shells: 
Although the probability of occurrence for each cowry value 
has been obtained empirically, a player cannot have a certain 
prediction about the outcome in advance. Hence, we have 
absolutely no control over this type of natural randomness and 
it acts as an unpredictable constraint for all the players. 

 

2) Randomness in selection of pieces by opponents: 
The fact that an intelligent opponent may choose different 
strategies during different stages of the game, suggests that it 
is very difficult to predict which one of the pieces may be 
selected by the opponent to play the next move. 
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Therefore, the strategy that the opponent is following is 
unknown from AI point of view, and can be considered as 
another type of randomness. However, it might be possible for 
an advanced AI player to be trained using machine learning 
techniques, in order to find some patterns to recognize the 
opponent’s strategy and accordingly to predict his probable 
next moves. Dealing with this concept is beyond the scope of 
this paper and can be considered as a future work. 

 

3) Randomness in selection of player’s own pieces: 
The idea behind random playing is to select one of the player’s 
pieces completely at random, without any reasoning or 
following any pattern. In this paper, we are merely dealing 
with this type of randomness and all theoretical and 
experimental analysis performed in this work is based on 
random selection of pieces for all AI players. 

C. Expected Number of Moves 

By definition presented in [29], the “expected value” of a 
random variable is the weighted mean of all its possible values. 
In other words, each possible value of the random variable is 
multiplied by its probability of occurring, and the summation of 
all the resulting products generates the expected value. Assume 
that random variable X can take value x1 with probability p1, 
value x2 with probability p2, and so on, up to value xk with 
probability pk. Then the expected value of a random variable X 
is given by, 

E[X] = x1p1 + x2p2 + … + xkpk 

If the probability of occurring for all outcomes xi are equal 
(i.e. p1 = p2 = ... = pk), then the expected value is the simple 
average. However, according to [29], if all outcomes are not 
equally probable and some outcomes xi are more likely than the 
others, then the expected value turns into the weighted average, 
as is the case in throwing four cowry shells shown in Table I. 

Suppose X represents the outcome of a throw of four cowry 
shells. The possible values for X are 1, 2, 3, 4 and 8 with the 
probabilities 0.243, 0.381, 0.236, 0.074 and 0.066 respectively. 
The expectation of X is given by, 

E[X] = 1(0.243) + 2(0.381) + 3(0.236) + 4(0.074) + 8(0.066) 

∴E[cowry] = 2.537 

So the expected value for a single throw of four cowry 
shells is 2.537. To complete an entire path around the board, a 
piece will require the following expected minimum number of 
moves, 

Total number of squares ÷ E[cowry] = 24 ÷ 2.537 ≈ 9.46 

Similarly, a player with 4 pieces will take an expected 
minimum number of 4 × 9.46 ≈ 37.84 moves to finish the 
game. Therefore, the expected minimum ply-length of a game 
with 4 players is 4 × 37.84 ≈ 151.36 moves. 

Therefore, a trivial lower-bound can be established by 
considering the expected minimum number of moves for a 
player. This expected minimum value is based on the 
assumption that the piece doesn’t get hit by another piece.  

 
 

However in an actual Cowry game, a piece may get hit and 
sent back to its starting square several times, hence the practical 
average number of moves for a player to complete the game 
could be much higher. 

While the total number of games won by a player in the 
long run is considered to be the initial measure of performance, 
it can be observed that the expected number of moves could 
also serve as a good measure to analyze the performance of a 
player or to compare the performance of different strategies. In 
general, a smaller expected number of moves to finish the game 
can be a definitive indicator of a better performance. 

Let us assume that a player will require n expected moves 
to complete all his pieces’ path around the board. Clearly, the 
player with the minimum value of n would be the expected 
winner. Hence, as proposed by [24], to minimize n, a player 
needs to follow one of the following approaches whenever 
possible: (a) minimize the number of times that his own pieces 
get hit and sent back, which can be achieved by following a 
defensive strategy, or (b) maximize the number of times that he 
attacks and hits other players, by following an aggressive 
strategy. 

Following other strategies could also have some advantages 
which need elaboration. However, in this research work we 
have only implemented and analyzed the most basic type of 
strategy, that is, the random strategy. Implementation, analysis 
and comparison of other types of strategies introduced in this 
paper will be explored in our future work. 

As Cowry game always needs to have a winner, in a game 
with four AI players all of them playing randomly, one of them 
will definitely win the game. This clearly indicates that even in 
an actual Cowry game, a player playing randomly has a chance, 
no matter how small, to win the game. Intuitively, it can be 
argued that the expected number of moves in playing randomly 
should be much higher than any other type of strategy; hence 
having any basic strategy is better than playing randomly. 

However, we believe that by analyzing random moves of 
AI players we can identify some obvious mistakes that players 
commit during the game-play. The enhanced knowledge base 
resulting from analyzing these mistakes can then be used for 
evolving better strategies and improving their performance. 

VI. IMPLEMENTATION AND EXPERIMENTATION 

In this section we briefly describe the implementation and 
the process of creation and interactions between required data 
structures for the basic version of the game. Furthermore, we 
state several phases of experiments conducted on the random 
strategy as well as the obtained results. 

A. Implementation 

The squares on Cowry game board can be classified into 
two types: safe squares and non-safe squares (see Fig. 2). A 
safe square is a square that can accommodate multiple pieces of 
different players simultaneously without being hit or sent back. 
On the other hand, only one piece can be placed on a non-safe 
square at a time. 

The approach introduced in [24] proposes that for the 
purpose of implementation, instead of defining several different 
safe squares, only one imaginary single safe square can be 
defined for all four starting squares of players as well as the 
goal (central square). 
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 Outer Squares Inner Squares Goal 

Positions on Board 42 43 44 34 24 14 04 03 02 01 00 10 20 30 40 41 31 21 11 12 13 23 33 32 22 

Red (South) Path 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

    

Positions on Board 02 01 00 10 20 30 40 41 42 43 44 34 24 14 04 03 13 23 33 32 31 21 11 12 22 

Blue (North) Path 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Figure 3.  Lookup Tables to Store the Paths for Red and Blue Players 

 

The game is set up by designing data structures 
representing entities involved in a typical Cowry game. A 5×5 
two-dimensional array is applied for representing the game 
board, as shown in Fig. 4.As mentioned earlier, each player has 
a different path around the board because they have different 
starting squares and they move into inner squares at different 
positions. Hence, we need to store the sequence of squares 
(paths) for each player as well as a method to map them into 
the squares on a common board. 

As an example, the sequence of squares for Red (South) 
player is shown on the board in Fig. 5. To get the path for 
Green (East) player, we just need to rotate the board by 90 
degrees in anticlockwise direction. However, based on our 
analysis, the idea of rotating the board and obtaining the 
positions of all different pieces for every move appears to be 
computationally expensive and not feasible. 

As an alternative approach, four lookup tables are designed 
to store the sequence of squares for different players, by 
applying four simple arrays of size 25. Each array index 
indicates the position with respect to the player’s path, and the 
value stored in that array index represents the corresponding 
square with respect to the common board. Fig. 3 illustrates the 
lookup tables for Red (South) and Blue (North) players. 

Four two-dimensional arrays are designed as “table of 
pieces” to store the current and destination positions of pieces 
for each player. Table V and Table VI are examples of table of 
pieces for Red and Blue players. 

We could verify that all the designed data structures interact 
with each other accurately. All the generated random cowry 
values, the pieces that have been selected randomly to make the 
moves as well as all other statistics of the games (such as 
number of squares traveled by each piece, number of winnings 
for each player, etc.) are automatically being recorded as log 
files for further processing. 

 

 0 1 2 3 4 

0 00 01 02 03 04 

1 10 11 12 13 14 

2 20 21 22 23 24 

3 30 31 32 33 34 

4 40 41 42 43 44 

Figure 4.  2D Array Representing the Game Board 

B. Number of Experiments 

Initially we tested our game setup by running 50 games 
with two AI players using pure random strategy. This was done 
to ensure that our game setup is correct and that each random 
player wins approximately equal number of times. Later we 
extended the number of AI players to four and we could verify 
that each random player wins 25.0±1.0% of the games. 

The obtained results stabilized at nearly 1000 games. 
Running a higher number of games did not change the variation 
in results significantly, suggesting that 1000 trials was an 
adequate number to observe reliable trends considering only 
the random strategy. However, more number of game runs 
would be advisable for analysis of other types of strategies. 

C. Testing the Performance of Random Strategy 

The first phase of our experimentation was to ensure that all 
AI players have equal chance of winning when they all follow 
pure random strategy. This was achieved by running 1000 
games with all four AI players playing randomly. We state the 
results in Table II and this test clearly demonstrates that each 
random player wins 25.0±1.0% of the games, hence the 
probability of winning for each random player is approximately 
equal. 

Furthermore, we randomly altered the order of players 
starting the game to check whether there could be any 
correlation between the player taking the first turn and the 
player who wins the game. The obtained results in Table II 
verifies that considering the total number of games won by any 
random player, approximately 25.0±2.0% of times that 
particular player had taken the first turn. Therefore, the results 
were unchanged when the player order was changed, 
suggesting that there was no significant bias towards the player 
taking the first turn. 
 

Home Square:  0 

Safe Squares:   0, 4, 8, 12 

Outer Squares: 0 to 15 

Inner Squares: 16 to 23 

Central Square: 24 

 

 

Figure 5.  The Path for Red (South) Player 

 
Blue 

(North) 
 

Yellow 

(West) 

10 9 8 7 6 

Green 

(East) 

11 18 19 20 5 

12 17 24 21 4 

13 16 23 22 3 

14 15 0 1 2 

 
Red 

(South) 
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TABLE II.  PROBABILITY OF WINNING FOR AI RANDOM PLAYERS 

1000 Games with 
Random Players 

Red 
(South) 

Green 
(East) 

Blue 
(North) 

Yellow 
(West) 

Total 

No. of times the 

player has won the 

game 

249 252 251 248 1000 

No. of times the 

winner has started 

the game 

63 64 62 61 − 

Percentage of 

winning for the 

player 

24.9% 25.2% 25.1% 24.8% 
25.0 ± 

1.0% 

Percentage of taking 

the first turn when 

the player has won 

25.3% 25.4% 24.7% 24.6% 
25.0 ± 

2.0% 

 
According to the “law of large numbers” [30], the average 

of the results obtained from a large number of trials should be 
close to the expected value, and will tend to become closer as 
more trials are performed. Therefore, the purpose of our next 
phase of experimentation was to show that for 1000 game runs, 
the average value obtained from throwing four cowry shells 
converges to the expected value which was calculated 
theoretically in section 5. 

TABLE III.  AVERAGE VALUE OF THROWING 4 COWRY SHELLS 

No. of 
Games 

Winner 
Sum of Cowry 
Values for the 

Winner 

Total No. of 
Throws by the 

Winner 

Average Cowry 
Value for Each 

Game 

1 Green 134 51 2.627 

2 Red 121 47 2.574 

3 Yellow 118 43 2.744 

4 Green 126 52 2.423 

5 Blue 115 48 2.396 …
 

…
 

…
 

…
 

…
 

1000 Red 131 49 2.673 

 

Sum of All 
Cowry Values in 

1000 Games 

Total No. of 
Throws in 1000 

Games 

Average Cowry 
Value in 1000 

Games 

125724 49548 2.537 

 

 

Figure 6.  Average Value of Throwing 4 Cowry Shells 

Table III states the summation of all cowry values obtained 
by a player to win a game as well as the total number of throws 
by the winner. Clearly, the ratio between these two values gives 
the average cowry value for a single game. We tabulated the 
results for 1000 game runs and finally calculated an overall 
average. Fig. 6 illustrates that as the number of throws 
increases, the average of all values approaches 2.537 which is 
the calculated theoretical expected value. 

We performed the next phase of experimentation to obtain a 
practical average number of moves for an AI random player to 
win the game. We then compared the test results with the 
expected minimum number of moves calculated in section 5. 
Table IV gives a view of test results and states the practical 
average number of moves for an AI player to win against other 
AI players when all of them are playing randomly. 

In general, a smaller number of moves to finish the game 
could be an indicator of a better performance. However, it can 
be observed from Fig. 7 that random players take much higher 
number of moves to win compared to the theoretical expected 
minimum number of moves, due to wrong moves and losing 
many opportunities. More specifically, a random player 
requires around 70% more number of moves on average to 
complete the game in comparison to the calculated minimum 
value, which implies that the random strategy performs very 
poorly in actual games. 

TABLE IV.  AVERAGE NO. OF MOVES WITH 4RANDOM PLAYERS 

No. of 
Games 

Practical Average No. of 
Moves for the Winner 

Theoretical Expected 
Minimum No. of Moves 

1 64.31 37.84 

2 66.85 37.84 

3 65.11 37.84 

4 63.71 37.84 

5 66.44 37.84 …
 

…
 

…
 

1000 63.58 37.84 

 

Practical Average No. of 
Moves in 1000 Games 

Theoretical Expected 
Minimum No. of Moves 

64.78 37.84 

 

 
Figure 7.  Average No. of Moves with 4Random Players 
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As discussed earlier, by analyzing the moves of AI random 
players we can identify some obvious mistakes they commit 
during the game-play. To demonstrate some of these mistakes, 
it may be relevant to give an actual example of a configuration 
in a game between two AI random players by considering the 
set up shown in Fig. 8. 

Our implemented program is responsible to generate a 
random cowry value for the players and also to choose one of 
the pieces randomly to play that move. In case the selected 
piece cannot legally make the move due to the rules of the 
game, the program should backtrack and select another 
random piece to move. 

Let us assume that both the players are eligible to move to 
inner squares. It is Red’s turn to play and the cowry value 
generated randomly is 3. The positions of Red pieces are given 
in Table V. 

At first, Red player randomly selects R4 to play the cowry 
value 3. Obviously, it is an invalid move and will be rejected 
by the program because R4 cannot move to a square occupied 
with another Red piece. Hence the program backtracks and 
selects another random piece R2, which only escapes from the 
danger zone of one opponent piece B1, and enters the danger 
zone of another piece B4. Hence this move won’t have any 
significant advantage for the player. 

The best move in this configuration would be moving R1 to 
inner squares, escaping an advanced piece from the danger of 
elimination by B3 and also threatening the opponent piece B2 
which is just one square away from the goal. 

Now let us assume Blue is to play in the same configuration 
and the generated cowry value is 2. Table VI shows the 
positions of Blue pieces. 

In order to play the cowry value 2, Blue player randomly 
selects B2 which is again identified by the program to be an 
invalid move because this piece only requires 1 to reach the 
goal. In the next attempt, B4 is randomly selected. Clearly, this 
would be an obvious mistake, moving a piece out of a safe 
square and placing it in the danger zone of R2 chasing it. 

Moving B1 to a safe square and escaping from the danger 
zone of R4 was definitely a better choice. However, the 
strongest move in this set up would be hitting an advanced 
opponent piece R1 with B3, which could also give Blue player 
an additional turn to play. 

 

           Blue 

            (North) 

     

  B2   

B3  R3  B4 

    R2 

R1  R4  B1 

           Red 

           (South) 

Figure 8.  Example Board Setup between 2 Random AI Players 

 
 

TABLE V.  TABLE OF PIECES FOR RED PLAYER 

Piece 
Current 

Position w.r.t 
Player’s Path 

Current 
Position w.r.t 

the Board 

Destination 
Position w.r.t 
Player’s Path 

Destination 
Position w.r.t 

the Board 

R1 14 40 14 + 3 = 17 21 

R2 3 34 3 + 3 = 6 04 

R3 24 22 24 + 3 = 27 − 

R4 0 42 0 + 3 = 3 34 

 

 R1: Escape & Attack (exits the danger zone of B3, and 
attacks B2) 

 R2: Under Attack (exits the danger zone of B1, but 
enters the danger zone of B4) 

 R3: Invalid Move (already reached the goal) 

 R4: Invalid Move (cannot hit another Red’s piece) 

TABLE VI.  TABLE OF PIECES FOR BLUE PLAYER 

Piece 
Current 

Position w.r.t 
Player’s Path 

Current 
Position w.r.t 

the Board 

Destination 
Position w.r.t 
Player’s Path 

Destination 
Position w.r.t 

the Board 

B1 10 44 10 + 2 = 12 24 

B2 23 12 23 + 2 = 25 − 

B3 4 20 4 + 2 = 6 40 

B4 12 24 12 + 2 = 14 04 

 

 B1: Escape (exits the danger zone of R4, and enters a 
safe square) 

 B2: Invalid Move (cannot move beyond the goal) 

 B3: Hit (hits the opponent piece R1) 

 B4: Under Attack (exits a safe square, and enters the 
danger zone of R2) 

 
As the above example demonstrates, random playing could 

result in some obvious mistakes and losing many opportunities 
throughout the game. Some of the typical mistakes committed 
by AI random players includes but not limited to the following, 

 

 Missing the chance to reach the goal 

 Missing the chance to hit an opponent piece 

 Missing the chance to attack (chase) an opponent piece 

 Missing the chance to escape into a safe square 

 Moving out of a safe square into a danger zone 

 Missing the chance to escape from a danger zone 

 Moving into a danger zone 
 

During the experimentation phase with four AI random 
players, we could identify and classify a vast number of such 
wrong decisions due to “blind random selection” of pieces, 
suggesting the poor performance of the random strategy in an 
actual Cowry games. However, a careful analysis of these 
wrong decisions and attempting to avoid them can lead us to 
generate more advanced strategies in our future work. 

In the last phase of our experimentation in this paper, we 
conducted several test games between one AI player which was 
playing randomly against a novice-level human player who was 
not specialized in any type of strategy and was playing purely 
based on intuition. It was clear that the AI random player had a 
very little chance of winning against a human player. However, 
despite its poor performance and losing many opportunities, the 
AI random player was successful to hit the human player a few 
times. 
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Our analysis shows that it was mainly because of human 
player mistakes in placing his pieces in risky positions, due to 
the fact that the human player was ignoring the danger from an 
opponent who was playing randomly without any intelligence. 
This test can demonstrate the possible effectiveness of the 
random strategy for confusing an intelligent player, in the sense 
that it is impossible to anticipate the next move of the AI player 
who is playing randomly without any pattern. 

Table VII gives the detailed result of 5 sample games and 
Fig. 9 illustrates the poor performance of an AI random player 
against a beginner human player, based on the total number of 
moves to finish the game. 

We shall mention that our basic implementation of the 
game only has a text-based user interface, and although it 
allows human interactions with the program through a 
command line, it is not capable of showing the movements of 
pieces graphically on the screen. Design and implementation of 
the graphical user interface (GUI) for the game is considered as 
a future work. 

 

TABLE VII.  STATISTICS OF HUMAN PLAYER VS. AI PLAYING RANDOMLY 

 
Game 1 Game 2 Game 3 Game 4 Game 5 

Human AI Human AI Human AI Human AI Human AI 

Status Won Lost Won Lost Won Lost Won Lost Won Lost 

Total No. 
of Moves 

42 71 44 73 40 75 45 78 41 76 

Total No. 
of Squares 

108 184 112 179 102 188 110 191 105 185 

Average 
Cowry 
Value 

2.57 2.59 2.54 2.45 2.55 2.51 2.44 2.45 2.56 2.43 

No. of Hits 7 1 9 2 6 1 8 2 5 1 

Lost the 
Chance to 

Hit 
0 5 1 6 0 4 0 5 1 6 

 
 

 

Figure 9.  Performance of Human Player vs. AI Playing Randomly 

 
 

VII. CONCLUSIONS AND FUTURE WORK 

In this research we introduced and conducted a fundamental 
study of Cowry game which is a race game from India, and we 
investigated the potential of a Cowry game AI. We discussed 
that the complexity of Cowry game is more than games like 
Chess due to the presence of an element of chance, suggesting 
that Cowry game is more challenging to solve compared to 
perfect information games. Accordingly, we proposed several 
playing strategies in the game: random, aggressive, defensive, 
move-first, move-last and mixed playing strategies. 

The main aim of this paper was to analyze the performance 
of randomness as a model for playing. A random strategy 
involves no decision-making for the players; hence we could 
entirely concentrate on the design and implementation of the 
game and to validate the correctness of our implementation and 
also to ensure that all of the game rules are applied properly. 

Furthermore, we believe that the analysis of random 
playing can be used for evolving better strategies in future 
work and also can serve as a benchmark against which to 
compare other strategies. Theoretical and experimental results 
presented in this research show that the random strategy 
performs poorly based on the average number of moves to win 
the game. 

The basic implementation of the game had a text-based user 
interface and was not capable of showing the game board and 
movements of pieces graphically on the screen. Design and 
implementation of the graphical user interface which could 
facilitate human interactions would be our next phase of work. 

For future work, we also consider the implementation, 
analysis and comparison of other types of strategies presented 
in this work. This can be achieved by formulating different 
evaluation functions. Using machine learning approaches, the 
evaluation functions may be adjusted after several game runs, 
and as proposed by [24], evolutionary algorithms may also be 
used to improve the evaluation functions after successive 
generations. Considering variations in learning modes such as 
learning by playing against an expert human player and 
learning by observation can also result in the discovery of 
better strategies and improved game-play. 

APPENDIX 

The “empirical probability” or “experimental probability” 
of an event, according to [31], is defined as the ratio of the 
number of results in which a certain event occurs to the total 
number of trials, obtained from experience and observation. In 
other words, empirical probability determines probabilities, not 
in a theoretical sample space but in an actual experiment. 

As is widely cited in the thesis [33], we performed the 
experiment of throwing four cowry shells together 5000 times 
and tabulated the probability of occurrence for each value. The 
probability of occurrence and cumulative probability for each 
cowry value is shown in Table VIII. 

Clearly the obtained probability distribution is non-uniform. 
Therefore, the problem in simulation of throwing four cowry 
shells is the generation of pseudo-random numbers that are 
following our obtained empirical distribution. 

Uniform random number generators are used so frequently 
that almost every computer programming language include 
functions or library routines that provide random number 
generators. However, there are no fast practical methods of 
generating non-uniform random numbers on the computer, 
except via the uniform random numbers. 
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TABLE VIII.  EMPIRICAL PROBABILITY OF OCCURRENCE 

Sub-intervals 0 – 1 1 – 2 2 – 3 3 – 4 4 – 5 

Cowry Values 1 2 3 4 8 

Probability of 
Occurrence 

0.243 0.381 0.236 0.074 0.066 

Cumulative 
Probabilities 

0.243 0.624 0.860 0.934 1.000 

 

 

Figure 10.  Mapping a Unit Random Number to Represent a Cowry Value 

Most algorithms are based on a pseudo-random number 
generator that produces numbers that are uniformly distributed 
in the interval [0, 1). These random numbers are then 
transformed via some algorithm to create a new random 
number having the required probability distribution. There are 
many techniques and tricks for converting uniform random 
numbers into our desired non-uniform random numbers, among 
which we have experimented the following two most 
commonly used methods, 

 Inverse Transformation Method 

 Acceptance-Rejection Method 
 

After careful experimentation on both of the above 
mentioned methods in the thesis [33], we observed that the 
performance and complexity of the “inverse transformation 
method” [32] is better for the simulation of throwing four 
cowry shells in our game. Therefore, a uniform random number 
in the interval [0,1) is generated, then by using the inverse 
transformation method the generated unit random number is 
mapped to one of the five sub-intervals shown in Fig. 10, where 
each sub-interval represents a cowry value. 
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