## data reports



OPEN 🗟 ACCESS

### Crystal structure of 1-ethylspiro[imidazolidine-4,1'-indane]-2,5-dione

#### Wahraan Mohammed Hussein,<sup>a</sup> Cynthia E. Theodore,<sup>b</sup> S. B. Benaka Prasad,<sup>b</sup>\* M. Madaiah,<sup>c</sup> S. Naveen<sup>d</sup> and N. K. Lokanath<sup>a</sup>

<sup>a</sup>Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, <sup>b</sup>Department of Chemistry, School of Engineering and Technology, Jain University, Bangalore 562 112, India, <sup>c</sup>Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and <sup>d</sup>Institution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India. \*Correspondence e-mail: benakaprasad@gmail.com

Received 22 July 2014; accepted 24 July 2014

Edited by E. R. T. Tiekink, University of Malaya, Malaysia

In the title compound,  $C_{13}H_{14}N_2O_2$ , the  $C_5$  ring has an envelope conformation with the C atom adjacent to the quaternary C being the flap. The five atoms comprising the imidazolidine-2,4-dione ring are almost planar (r.m.s. deviation = 0.004 Å). The dihedral angle between the five-membered rings is 89.66 (10)°. In the crystal, inversion-related molecules are connected *via* {···HNCO}<sub>2</sub> synthons. These are linked into a helical supramolecular chain along [010] by C–H···O interactions.

**Keywords:** crystal structure; spiro compounds; hydantoin derivatives;  $\{\cdots$ HNCO $\}_2$  synthons; helical supramolecular chain; C—H $\cdots$ O interactions.

CCDC reference: 1015714

#### 1. Related literature

For background to the synthesis and biological activity of hydantoin derivatives, see: Manjunath *et al.* (2011, 2012). For conformational analysis, see: Cremer & Pople (1975).



#### 2. Experimental

#### 2.1. Crystal data

N

| $C_{13}H_{14}N_2O_2$        | $V = 1191.56 (16) \text{ Å}^3$            |
|-----------------------------|-------------------------------------------|
| $A_r = 230.26$              | Z = 4                                     |
| Aonoclinic, $P2_1/n$        | Cu $K\alpha$ radiation                    |
| = 13.7183 (10) Å            | $\mu = 0.72 \text{ mm}^{-1}$              |
| P = 6.2040 (5)  Å           | T = 296  K                                |
| = 15.1944 (11) Å            | $0.23 \times 0.22 \times 0.21 \text{ mm}$ |
| $B = 112.865 \ (3)^{\circ}$ |                                           |

**CrossMark** 

#### 2.2. Data collection

| Bruker X8 Proteum diffractometer    |
|-------------------------------------|
| Absorption correction: multi-scan   |
| (SADABS; Sheldrick, 1997)           |
| $T_{min} = 0.867$ $T_{max} = 0.867$ |

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$   $wR(F^2) = 0.120$  S = 1.071953 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$         | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------|------|-------------------------|--------------|--------------------------------------|
| $N3-H4\cdots O7^{i}$     | 0.86 | 2.05                    | 2.886 (2)    | 163                                  |
| $C11-H7\cdots O7^{ii}$   | 0.93 | 2.58                    | 3.501 (2)    | 173                                  |
| $C17-H10\cdots O6^{iii}$ | 0.97 | 2.56                    | 3.392 (2)    | 143                                  |

6730 measured reflections 1953 independent reflections

 $R_{\rm int} = 0.027$ 

156 parameters

 $\Delta \rho_{\text{max}} = 0.23 \text{ e} \text{ Å}^-$ 

 $\Delta \rho_{\rm min} = -0.21$  e Å<sup>-3</sup>

1742 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y, -z + 2; (iii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

#### Acknowledgements

The authors are thankful to the IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5331).

#### References

- Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Manjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Deepa Naveen, M. V., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2011). J. Struct. Chem. 52, 959–993.
- Manjunath, H. R., Naveen, S., Ananda Kumar, C. S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2012). J. Chem. Crystallogr. 42, 505–507.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.

# supporting information

Acta Cryst. (2014). E70, o954 [doi:10.1107/S1600536814017097]

## Crystal structure of 1-ethylspiro[imidazolidine-4,1'-indane]-2,5-dione

# Wahraan Mohammed Hussein, Cynthia E. Theodore, S. B. Benaka Prasad, M. Madaiah, S. Naveen and N. K. Lokanath

#### S1. Comment

The chemistry and properties of hydantoins and their derivatives have been investigated for more than 140 years. The hydantoin moiety which is present in various biologically active compounds is of immense pharmaceutical importance. There has been considerable interest in the synthesis and characterization of hydantoin derivatives as an important class of heterocyclic compounds. Hydantoin derivatives that display interesting activities against a broad range of biological targets have been identified. Activity of hydantoin derivatives depends on the nature of substitution of hydantoin rings. As a part of our ongoing research on hydantoins (Manjunath *et al.*, 2012), the synthesis, characterization and the structural work was undertaken on the title compound and herein we report its crystal structure.

The hydantoin ring in the structure is planar within experimental limits with a maximum deviation of 0.0036 (19) Å for C2 atom from the least squares plane of the hydantoin ring. The N—C bong lengths of N1—C2 = 1.394 (2) Å, N1—C5 = 1.367 (2) Å and N3—C2 = 1.337 (2) Å are comparable with the values reported earlier (Manjunath *et al.*, 2011; Manjunath *et al.*, 2012). The shortened bond length values can be attributed to the  $\pi$ -conjugation in the hydantoin ring.

The study of torsion angles, asymmetric parameters and least squares plane reveals that the five membered ring of the bicyclo octane moiety adopts envelope conformation with C4 atom deviating by 0.1121 (17) Å from the least-squares plane (Cremer & Pople, 1975). This is confirmed by the puckering amplitude Q = 0.2163 (19) Å. The hydantoin ring is in a equatorial position with the five membered ring which is evident by the dihedral angle value of 89.66 (10)°. The structure of the molecule is stabilized by the intermolecular hydrogen bonds of the type N—H…O and C—H…O (Table 1).

#### **S2. Experimental**

To a solution of 2, 3-dihydrospiro-[imidazoline-4–1-indene]-2,5-dione (1.0 eq) in *N*,*N*-dimethylformamide was added anhydrous  $K_2CO_3$  (3.0 eq) followed by stirring for 10 min. 1-Bromoethane (1–1.1eq) was then added. The reaction mixture was stirred at room temperature for 8 h and the progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and the residue was taken in water and extracted with ethyl acetate. Finally, the organic layer was washed with water and then dried over anhydrous sodium sulfate. The solvent was evaporated. The crude product was purified by column chromatography using chloroform:methanol (9:1) as an eluent. Single crystals were obtained from slow evaporation of its ethylacetate solution.

#### **S3. Refinement**

The C-bound hydrogen atom were fixed geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with  $U_{iso}(H) = 1.2-1.5U_{eq}(C)$ . The N-bound H atom was included in the model with N—H = 0.86 Å, and with  $U_{iso}(H) = 1.2U_{eq}(N)$ .



#### Figure 1

A view of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.



#### Figure 2

A view along the *b* axis of the crystal packing of the title compound.

#### 1-Ethylspiro[imidazolidine-4,1'-indane]-2,5-dione

Crystal data

C<sub>13</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>  $M_r = 230.26$ Monoclinic,  $P2_1/n$ Hall symbol: -P 2yn a = 13.7183 (10) Å b = 6.2040 (5) Å c = 15.1944 (11) Å  $\beta = 112.865 (3)^{\circ}$  $V = 1191.56 (16) \text{ Å}^3$ 

#### Data collection

Bruker X8 Proteum diffractometer Detector resolution: 10.7 pixels mm<sup>-1</sup>  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1997)  $T_{\min} = 0.867, T_{\max} = 0.867$ 6730 measured reflections

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.042$  $wR(F^2) = 0.120$  Z = 4 F(000) = 488  $D_x = 1.284 \text{ Mg m}^{-3}$ Cu K\alpha radiation,  $\lambda = 1.54178 \text{ Å}$   $\mu = 0.72 \text{ mm}^{-1}$ T = 296 K Block, colourless  $0.23 \times 0.22 \times 0.21 \text{ mm}$ 

1953 independent reflections 1742 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.027$   $\theta_{max} = 64.5^{\circ}, \ \theta_{min} = 3.7^{\circ}$   $h = -15 \rightarrow 15$   $k = -3 \rightarrow 7$  $l = -16 \rightarrow 17$ 

S = 1.071953 reflections 156 parameters 0 restraints

| $w = 1/[\sigma^2(F_o^2) + (0.0649P)^2 + 0.277P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                 |
|----------------------------------------------------------------------------------------------------|
| $(\Delta/\sigma)_{\rm max} = 0.001$                                                                |
| $\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$                                            |
| $\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$                                         |
| Extinction correction: SHELXL97 (Sheldrick,                                                        |
| 2008), FC <sup>*</sup> =KFC[1+0.001XFC <sup>2</sup> $\Lambda^3$ /SIN(2 $\Theta$ )] <sup>-1/4</sup> |
| Extinction coefficient: 0.0109 (13)                                                                |
|                                                                                                    |

#### Special details

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The observed criterion of  $F^2 > \sigma(F^2)$  is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|-------------|--------------|-----------------------------|
| 06  | 0.76182 (10) | -0.0363 (2) | 0.94368 (9)  | 0.0601 (5)                  |
| 07  | 0.55113 (10) | 0.2685 (2)  | 1.07873 (8)  | 0.0578 (4)                  |
| N1  | 0.66453 (10) | 0.0760 (2)  | 1.02847 (9)  | 0.0424 (4)                  |
| N3  | 0.57906 (12) | 0.3540 (2)  | 0.94258 (10) | 0.0519 (5)                  |
| C2  | 0.59249 (12) | 0.2404 (3)  | 1.02119 (11) | 0.0434 (5)                  |
| C4  | 0.64286 (12) | 0.2741 (2)  | 0.89160 (11) | 0.0409 (5)                  |
| C5  | 0.69854 (12) | 0.0850 (2)  | 0.95511 (11) | 0.0414 (5)                  |
| C8  | 0.70154 (13) | -0.0797 (3) | 1.10674 (12) | 0.0510 (5)                  |
| C9  | 0.79910 (18) | -0.0056 (4) | 1.18691 (15) | 0.0760 (8)                  |
| C10 | 0.57793 (11) | 0.2115 (2)  | 0.78900 (10) | 0.0383 (4)                  |
| C11 | 0.50778 (13) | 0.0411 (3)  | 0.75563 (14) | 0.0545 (6)                  |
| C12 | 0.45848 (16) | 0.0121 (4)  | 0.65796 (16) | 0.0713 (7)                  |
| C13 | 0.47830 (15) | 0.1510 (4)  | 0.59623 (14) | 0.0741 (8)                  |
| C14 | 0.54676 (14) | 0.3205 (4)  | 0.62923 (13) | 0.0649 (7)                  |
| C15 | 0.59759 (11) | 0.3507 (3)  | 0.72680 (11) | 0.0447 (5)                  |
| C16 | 0.67693 (15) | 0.5191 (3)  | 0.77928 (14) | 0.0586 (6)                  |
| C17 | 0.72378 (15) | 0.4361 (3)  | 0.88099 (13) | 0.0569 (6)                  |
| H1  | 0.85420      | 0.01810     | 1.16380      | 0.1140*                     |
| H2  | 0.44450      | 0.12930     | 0.53070      | 0.0890*                     |
| Н3  | 0.78460      | 0.12630     | 1.21260      | 0.1140*                     |
| H4  | 0.53720      | 0.46290     | 0.92390      | 0.0620*                     |
| Н5  | 0.55900      | 0.41400     | 0.58670      | 0.0780*                     |
| H6  | 0.41160      | -0.10190    | 0.63380      | 0.0860*                     |
| H7  | 0.49420      | -0.05110    | 0.79780      | 0.0650*                     |
| H8  | 0.73090      | 0.53320     | 0.75320      | 0.0700*                     |
| Н9  | 0.64310      | 0.65790     | 0.77600      | 0.0700*                     |
| H10 | 0.73560      | 0.55430     | 0.92580      | 0.0680*                     |
| H11 | 0.79080      | 0.36510     | 0.89350      | 0.0680*                     |

# supporting information

| H12 | 0.64620 | -0.10350 | 1.13040 | 0.0610* |
|-----|---------|----------|---------|---------|
| H13 | 0.71580 | -0.21600 | 1.08280 | 0.0610* |
| H14 | 0.82130 | -0.11370 | 1.23600 | 0.1140* |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| O6  | 0.0622 (8)  | 0.0624 (8)  | 0.0613 (8)  | 0.0248 (6)   | 0.0301 (6)  | 0.0006 (6)   |
| O7  | 0.0702 (8)  | 0.0651 (8)  | 0.0502 (7)  | 0.0260 (6)   | 0.0366 (6)  | 0.0125 (6)   |
| N1  | 0.0483 (7)  | 0.0410 (7)  | 0.0397 (7)  | 0.0137 (5)   | 0.0190 (6)  | 0.0071 (5)   |
| N3  | 0.0724 (9)  | 0.0482 (8)  | 0.0425 (8)  | 0.0301 (7)   | 0.0305 (7)  | 0.0115 (6)   |
| C2  | 0.0505 (9)  | 0.0436 (8)  | 0.0382 (8)  | 0.0131 (7)   | 0.0195 (7)  | 0.0021 (7)   |
| C4  | 0.0489 (8)  | 0.0398 (8)  | 0.0373 (8)  | 0.0060 (6)   | 0.0205 (7)  | -0.0005 (6)  |
| C5  | 0.0428 (8)  | 0.0411 (8)  | 0.0400 (8)  | 0.0059 (7)   | 0.0159 (6)  | -0.0035 (6)  |
| C8  | 0.0549 (9)  | 0.0473 (9)  | 0.0523 (10) | 0.0120 (7)   | 0.0225 (8)  | 0.0144 (8)   |
| C9  | 0.0771 (13) | 0.0799 (15) | 0.0547 (12) | 0.0073 (11)  | 0.0079 (10) | 0.0142 (10)  |
| C10 | 0.0360 (7)  | 0.0432 (8)  | 0.0382 (8)  | 0.0043 (6)   | 0.0171 (6)  | 0.0003 (6)   |
| C11 | 0.0482 (9)  | 0.0568 (10) | 0.0589 (11) | -0.0082 (8)  | 0.0211 (8)  | -0.0026 (8)  |
| C12 | 0.0516 (10) | 0.0831 (14) | 0.0681 (14) | -0.0145 (10) | 0.0112 (10) | -0.0207 (11) |
| C13 | 0.0497 (10) | 0.1212 (19) | 0.0424 (10) | -0.0016 (12) | 0.0080 (8)  | -0.0116 (11) |
| C14 | 0.0503 (10) | 0.1028 (16) | 0.0408 (10) | 0.0043 (10)  | 0.0167 (8)  | 0.0148 (10)  |
| C15 | 0.0367 (8)  | 0.0571 (10) | 0.0420 (9)  | 0.0049 (7)   | 0.0171 (7)  | 0.0084 (7)   |
| C16 | 0.0587 (10) | 0.0530 (10) | 0.0633 (12) | -0.0060 (8)  | 0.0230 (9)  | 0.0116 (9)   |
| C17 | 0.0621 (10) | 0.0521 (10) | 0.0516 (10) | -0.0131 (8)  | 0.0167 (8)  | -0.0065 (8)  |

Geometric parameters (Å, °)

| O6—C5                | 1.211 (2) | C14—C15               | 1.384 (2) |
|----------------------|-----------|-----------------------|-----------|
| O7—C2                | 1.226 (2) | C15—C16               | 1.496 (3) |
| N1-C2                | 1.394 (2) | C16—C17               | 1.515 (3) |
| N1C5                 | 1.367 (2) | C8—H12                | 0.9700    |
| N1-C8                | 1.462 (2) | C8—H13                | 0.9700    |
| N3—C2                | 1.337 (2) | C9—H1                 | 0.9600    |
| N3—C4                | 1.462 (2) | С9—Н3                 | 0.9600    |
| N3—H4                | 0.8600    | C9—H14                | 0.9600    |
| C4—C5                | 1.523 (2) | C11—H7                | 0.9300    |
| C4—C10               | 1.515 (2) | С12—Н6                | 0.9300    |
| C4—C17               | 1.552 (3) | C13—H2                | 0.9300    |
| С8—С9                | 1.490 (3) | C14—H5                | 0.9300    |
| C10-C11              | 1.386 (2) | C16—H8                | 0.9700    |
| C10—C15              | 1.382 (2) | С16—Н9                | 0.9700    |
| C11—C12              | 1.383 (3) | C17—H10               | 0.9700    |
| C12—C13              | 1.376 (3) | C17—H11               | 0.9700    |
| C13—C14              | 1.369 (3) |                       |           |
|                      |           |                       |           |
| O6…C17 <sup>i</sup>  | 3.392 (2) | C17···H2 <sup>x</sup> | 3.0300    |
| O6…C14 <sup>ii</sup> | 3.343 (3) | H1…C5                 | 3.0900    |
| O7…N3 <sup>iii</sup> | 2.886 (2) | H1···C13 <sup>x</sup> | 3.0900    |
|                      |           |                       |           |

| O6…H11                 | 2.6800                                  | H1····C14 <sup>x</sup>    | 3.0600      |
|------------------------|-----------------------------------------|---------------------------|-------------|
| O6…H13                 | 2.6700                                  | H2····C13 <sup>viii</sup> | 3.0700      |
| O6…H5 <sup>ii</sup>    | 2.6900                                  | H2····C17 <sup>ix</sup>   | 3.0300      |
| O6…H10 <sup>i</sup>    | 2.5600                                  | H2…H11 <sup>ix</sup>      | 2.3200      |
| O7…H12                 | 2.6200                                  | H3…H14 <sup>iv</sup>      | 2.4900      |
| O7…H14 <sup>iv</sup>   | 2.7700                                  | H4…O7 <sup>iii</sup>      | 2.0500      |
| O7…H4 <sup>iii</sup>   | 2.0500                                  | H4…C2 <sup>iii</sup>      | 2.9000      |
| O7…H7 <sup>v</sup>     | 2.5800                                  | H5…O6 <sup>vi</sup>       | 2.6900      |
| N3…O7 <sup>iii</sup>   | 2.886(2)                                | H7…C5                     | 3.0100      |
| C14…O6 <sup>vi</sup>   | 3.343 (3)                               | H7…O7 <sup>v</sup>        | 2.5800      |
| C17…O6 <sup>vii</sup>  | 3.392 (2)                               | H8…C15 <sup>vi</sup>      | 2.9900      |
| C2···H4 <sup>iii</sup> | 2.9000                                  | H9…C11 <sup>vii</sup>     | 2.9600      |
| С5…Н1                  | 3.0900                                  | H10····O6 <sup>vii</sup>  | 2.5600      |
| С5…Н7                  | 3.0100                                  | H11…O6                    | 2.6800      |
| C11…H9 <sup>i</sup>    | 2.9600                                  | $H11\cdots H2^{x}$        | 2.3200      |
| C13…H2 <sup>viii</sup> | 3.0700                                  | H12…O7                    | 2.6200      |
| C13···H1 <sup>ix</sup> | 3.0900                                  | H13…O6                    | 2.6700      |
| C14···H1 <sup>ix</sup> | 3.0600                                  | H14····O <sup>7xi</sup>   | 2.7700      |
| C15…H8 <sup>ii</sup>   | 2.9900                                  | $H14\cdots H3^{xi}$       | 2.4900      |
|                        | _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                           | ,           |
| C2—N1—C5               | 111.19(12)                              | C4—C17—C16                | 106.81 (15) |
| C2—N1—C8               | 124.02 (14)                             | N1—C8—H12                 | 109.00      |
| C5—N1—C8               | 124.75 (14)                             | N1—C8—H13                 | 109.00      |
| C2—N3—C4               | 113.05 (14)                             | C9—C8—H12                 | 109.00      |
| C2—N3—H4               | 123.00                                  | C9—C8—H13                 | 109.00      |
| C4—N3—H4               | 123.00                                  | H12—C8—H13                | 108.00      |
| N1—C2—N3               | 107.70 (14)                             | C8—C9—H1                  | 109.00      |
| 07—C2—N1               | 123.90 (15)                             | С8—С9—Н3                  | 109.00      |
| O7—C2—N3               | 128.41 (17)                             | C8—C9—H14                 | 109.00      |
| N3—C4—C17              | 115.79 (12)                             | H1—C9—H3                  | 110.00      |
| C5—C4—C10              | 113.84 (11)                             | H1—C9—H14                 | 109.00      |
| C5—C4—C17              | 111.22 (14)                             | H3—C9—H14                 | 109.00      |
| C10—C4—C17             | 102.56 (13)                             | C10—C11—H7                | 121.00      |
| N3—C4—C5               | 100.46 (12)                             | C12—C11—H7                | 121.00      |
| N3-C4-C10              | 113.47 (14)                             | С11—С12—Н6                | 120.00      |
| O6—C5—N1               | 125.62 (14)                             | С13—С12—Н6                | 120.00      |
| N1—C5—C4               | 107.59 (13)                             | C12—C13—H2                | 119.00      |
| O6—C5—C4               | 126.79 (15)                             | C14—C13—H2                | 119.00      |
| N1—C8—C9               | 112.28 (16)                             | C13—C14—H5                | 121.00      |
| C4-C10-C15             | 110.52 (13)                             | C15—C14—H5                | 120.00      |
| C4—C10—C11             | 128.23 (14)                             | С15—С16—Н8                | 111.00      |
| C11—C10—C15            | 121.24 (15)                             | С15—С16—Н9                | 111.00      |
| C10-C11-C12            | 118.18 (18)                             | C17—C16—H8                | 111.00      |
| C11—C12—C13            | 120.4 (2)                               | С17—С16—Н9                | 111.00      |
| C12—C13—C14            | 121.37 (19)                             | H8—C16—H9                 | 109.00      |
| C13—C14—C15            | 119.00 (19)                             | C4—C17—H10                | 110.00      |
| C10-C15-C16            | 111.52 (14)                             | C4—C17—H11                | 110.00      |
| C10-C15-C14            | 119.80 (17)                             | C16—C17—H10               | 110.00      |
|                        |                                         | 210 217 1110              | 110:00      |

| C14—C15—C16                     | 128.68 (17)  | C16—C17—H11                       | 110.00                  |
|---------------------------------|--------------|-----------------------------------|-------------------------|
| C15—C16—C17                     | 103.82 (15)  | H10—C17—H11                       | 109.00                  |
| C5N1C207                        | -179 31 (16) | N3_C4_C10_C15                     | 112 36 (15)             |
| $C_5 = N_1 = C_2 = O_7$         | 0.70(10)     | $C_5  C_4  C_{10}  C_{11}$        | 112.30 (13)<br>45.9 (2) |
| $C_{3}$ N1 $C_{2}$ $O_{7}$      | -1.6(2)      | $C_{5} = C_{4} = C_{10} = C_{11}$ | -12254(15)              |
| $C_0 = N_1 = C_2 = O_7$         | -1.0(5)      | $C_{3}$ $C_{4}$ $C_{10}$ $C_{13}$ | -133.34(13)             |
| $C_{0} = N_{1} = C_{2} = N_{3}$ | 178.45 (15)  |                                   | 100.10 (17)             |
| C2-N1-C5-O6                     | 179.35 (16)  | C17—C4—C10—C15                    | -13.28 (17)             |
| C2—N1—C5—C4                     | -0.48 (17)   | N3—C4—C17—C16                     | -103.10 (17)            |
| C8—N1—C5—O6                     | 1.6 (3)      | C5-C4-C17-C16                     | 143.07 (15)             |
| C8—N1—C5—C4                     | -178.21 (14) | C10-C4-C17-C16                    | 21.02 (17)              |
| C2—N1—C8—C9                     | -90.8 (2)    | C4—C10—C11—C12                    | -178.69 (18)            |
| C5—N1—C8—C9                     | 86.6 (2)     | C15—C10—C11—C12                   | 0.7 (3)                 |
| C4—N3—C2—O7                     | 179.36 (17)  | C4-C10-C15-C14                    | 179.40 (16)             |
| C4—N3—C2—N1                     | -0.64 (19)   | C4-C10-C15-C16                    | 0.3 (2)                 |
| C2—N3—C4—C5                     | 0.34 (17)    | C11—C10—C15—C14                   | -0.1 (3)                |
| C2-N3-C4-C10                    | 122.24 (15)  | C11—C10—C15—C16                   | -179.18 (16)            |
| C2—N3—C4—C17                    | -119.53 (16) | C10-C11-C12-C13                   | -0.7 (3)                |
| N3—C4—C5—O6                     | -179.74 (16) | C11—C12—C13—C14                   | 0.0 (4)                 |
| N3—C4—C5—N1                     | 0.09 (16)    | C12—C13—C14—C15                   | 0.6 (3)                 |
| C10—C4—C5—O6                    | 58.6 (2)     | C13—C14—C15—C10                   | -0.6 (3)                |
| C10-C4-C5-N1                    | -121.54 (15) | C13—C14—C15—C16                   | 178.3 (2)               |
| C17—C4—C5—O6                    | -56.6 (2)    | C10-C15-C16-C17                   | 13.2 (2)                |
| C17—C4—C5—N1                    | 123.20 (14)  | C14—C15—C16—C17                   | -165.8(2)               |
| N3—C4—C10—C11                   | -68.2 (2)    | C15—C16—C17—C4                    | -21.00 (19)             |
|                                 |              |                                   |                         |

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+3/2, *y*-1/2, -*z*+3/2; (iii) -*x*+1, -*y*+1, -*z*+2; (iv) -*x*+3/2, *y*+1/2, -*z*+5/2; (v) -*x*+1, -*y*, -*z*+2; (vi) -*x*+3/2, *y*+1/2, -*z*+3/2; (vii) *x*, *y*+1, *z*; (viii) -*x*+1, -*y*, -*z*+1; (ix) *x*-1/2, -*y*+1/2, *z*-1/2; (x) *x*+1/2, -*y*+1/2, *z*+1/2; (xi) -*x*+3/2, *y*-1/2, -*z*+5/2.

#### *Hydrogen-bond geometry (Å, °)*

| D—H···A                    | <i>D</i> —Н | H···A | D···· $A$ | D—H··· $A$ |
|----------------------------|-------------|-------|-----------|------------|
| N3—H4····O7 <sup>iii</sup> | 0.86        | 2.05  | 2.886 (2) | 163        |
| С11—Н7…О7 <sup>v</sup>     | 0.93        | 2.58  | 3.501 (2) | 173        |
| C17—H10…O6 <sup>vii</sup>  | 0.97        | 2.56  | 3.392 (2) | 143        |

Symmetry codes: (iii) -*x*+1, -*y*+1, -*z*+2; (v) -*x*+1, -*y*, -*z*+2; (vii) *x*, *y*+1, *z*.