

ISSN 2414-3146

Received 23 November 2016 Accepted 5 December 2016

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; triazolo[1,5-a]pyri-]pyrimidine derivatives; hydrogen bonds; Br \cdots N halogen bonds; π - π stacking interactions.

CCDC reference: 1520692

Structural data: full structural data are available from iucrdata.iucr.org

5-Bromo-1,2,4-triazolo[1,5-a]pyrimidine

Maryam Gilandoust,^a K. B. Harsha,^a S. Madan Kumar,^b K. S. Rakesh,^a N. K. Lokanath,^c K. Byrappa^d and K. S. Rangappa^a*

^aDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore, Karnataka, India, ^bPURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, ^cDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore, Karnataka, India, and ^dDepartment of Material Science, Mangalore University, Mangaluru 574 199, India. *Correspondence e-mail: rangappaks@gmail.com

In the title compound, $C_5H_3BrN_4$, the almost planar triazolopyrimidine ring system (r.m.s. deviation = 0.014 Å) carries a bromo substituent at the 5-position. In the crystal, $C-H \cdots N$ hydrogen bonds form inversion dimers enclosing $R_2^2(8)$ rings and also link molecules into C(5) chains along the *c*-axis direction. Br $\cdots N$ halogen bonds [3.185 (4) Å], $\pi-\pi$ stacking interactions, centroid-to-centroid separation [3.663 (3) Å] and $C-Br \cdots \pi$ contacts [Br $\cdots Cg$ = 3.7881 (17) Å] are also found and combine with the $C-H \cdots N$ hydrogen bonds to stack the molecules along the *a*-axis direction.

Structure description

In a continuation of our work on the synthesis and structure determination of 1,2,4-triazolo[1,5-*a*]pyrimidine derivatives (Gilandoust *et al.*, 2016), the title compound was prepared and its structure is reported here, Fig. 1. The triazolopyrimidine ring system is planar (as expected) with an r.m.s. deviation of 0.014 Å. Bond lengths and angles in the ring system are normal and similar to those found in the related compound 5-(2-ethoxy-4-fluorophenyl-1,2,4-triazolo[1,5-*a*]pyrimidine (Gilandoust *et al.*, 2016).

In the crystal, C5–H5…N3 contacts, Table 1, form inversion dimers and generate $R_2^2(6)$ rings. C1–H1…N1 hydrogen bonds form C(5) chains of molecules along c. These contacts combine with Br1…N4ⁱⁱⁱ halogen bonds [d(Br…N) = 3.185 (4) Å; symmetry code: (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}]$ to form stacked layers of molecules in the bc plane, Fig. 2. Stacking along the a-axis direction is aided further by a combination of offset $\pi - \pi$ stacking interactions $[Cg1...Cg2^{iv} = 3.663 (3) \text{ Å};$ symmetry code: (iv) -1 + x, y, z; Cg1 and Cg2 are the centroids of the C4/N2/N3/C5/N4 and C1–C3/N1/C4/N2 rings, respectively] reinforced by unusual, but not unprecedented (Shukla *et al.*, 2017), C3–

Figure 1

A view of the title molecule, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Br1···*Cg*2^v contacts [Br···*Cg*1 = 3.7881 (17) Å, C3– Br1···*Cg*2 = 67.60 (12)°; symmetry code: (v) x + 1, y, z;], Fig. 3. Overall, a three-dimensional network of molecules stacked along the *a*-axis direction forms as a result of these contacts, Fig. 4.

Figure 2

Layers of molecules in the bc plane. Hydrogen and halogen bonds are drawn as blue dashed lines.

Figure 3

Offset π - π contacts and C-Br··· π interactions (green dotted lines), with ring centroids shown as coloured spheres.

Table 1		
Hydrogen-bond g	geometry (Å	, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1\cdots N1^{i}$	0.93	2.52	3.421 (6)	164
$C5-H5\cdots N3^{ii}$	0.93	2.61	3.321 (6)	133

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x - 1, -y, -z + 2.

Table 2

Experimental details.

Crystal data	
Chemical formula	C ₅ H ₃ BrN ₄
M _r	199.02
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	293
a, b, c (Å)	3.9511 (4), 14.3306 (11), 11.367 (1)
β (°)	94.574 (8)
$V(Å^3)$	641.57 (9)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	6.32
Crystal size (mm)	$0.31 \times 0.24 \times 0.23$
Data collection	
Diffractometer	Rigaku Saturn724+
Absorption correction	Multi-scan (<i>NUMABS</i> ; Rigaku, 1999)
T_{\min}, T_{\max}	0.244, 0.323
No. of measured, independent and	2438, 1129, 977
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.036
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.111, 1.08
No. of reflections	1129
No. of parameters	92
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.78, -0.48

Computer programs: CrystalClear SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and OLEX2 (Dolomanov et al., 2009).

Synthesis and crystallization

5-Bromo-2-hydrazinopyrimidine (0.95 mmol) and formaldehyde (1.00 mmol) were suspended in EtOH (5 ml), and stirred for 2 h at RT. The reaction mixture was concentrated under

Figure 4

The overall packing, viewed along the *a* axis, showing π - π contacts and C-Br··· π interactions.

reduced pressure to remove the ethanol and the crude product purified by column chromatography using 60:120 mesh silica gel and a MeOH: dichloromethane solution (10:90 ml) as eluent to yield 5-bromo-2-(2-methylenehydrazinyl) pyrimidine as a beige solid. 5-Bromo-2-(2-methylenehydrazinyl)pyrimidine (0.78 mmol) dissolved in (5 ml) dichloromethane and iodobenzene diacetate (0.78 mmol) was added in one portion. The mixture was stirred for 15 h at RT and the solvent evaporated. The residue was titurated with Et₂O (5 ml), filtered and chromatographed using 60:120 mesh silica gel and MeOH:dichloromethane (10:90 ml) as eluent to give 5-bromo-[1,2,4]triazolo[1,5-*a*]pyrimidine as a yellow solid. Good quality single crystals suitable for X-ray diffraction studies were obtained by the slow evaporation method using ethanol as solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility. KSR thanks the DST, Indo-Korea programme (grant No. INT/Korea/dated/13/09/2011) and KBH thanks the UGC for providing a UGC meritorious fellowship.

References

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gilandoust, M., Harsha, K. B., Madan Kumar, S., Rakesh, K. S., Lokanath, N. K., Byrappa, K. & Rangappa, K. S. (2016). *IUCrData*, **1**, x161770.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shukla, R., Panini, P., McAdam, C. J., Robinson, B. H., Simpson, J., Tagg, T. & Chopra, D. (2017). *J. Mol. Struct.* **1131**, 16–24.

full crystallographic data

IUCrData (2016). **1**, x161944 [https://doi.org/10.1107/S2414314616019441]

5-Bromo-1,2,4-triazolo[1,5-a]pyrimidine

Maryam Gilandoust, K. B. Harsha, S. Madan Kumar, K. S. Rakesh, N. K. Lokanath, K. Byrappa and K. S. Rangappa

F(000) = 384

 $\theta = 2.3 - 25.0^{\circ}$ $\mu = 6.32 \text{ mm}^{-1}$

Colourless, block

 $0.31 \times 0.24 \times 0.23$ mm

 $\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$

1129 independent reflections 977 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.036$

 $h = -4 \rightarrow 3$ $k = -16 \rightarrow 17$ $l = -13 \rightarrow 12$

 $D_{\rm x} = 2.060 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1129 reflections

5-Bromo-1,2,4-triazolo[1,5-a]pyrimidine

Crystal data

C₃H₃BrN₄ $M_r = 199.02$ Monoclinic, $P2_1/n$ a = 3.9511 (4) Å b = 14.3306 (11) Å c = 11.367 (1) Å $\beta = 94.574$ (8)° V = 641.57 (9) Å³ Z = 4

Data collection

Rigaku Saturn724+
diffractometer
profile data from ω -scans
Absorption correction: multi-scan
(NUMABS; Rigaku, 1999)
$T_{\min} = 0.244, \ T_{\max} = 0.323$
2438 measured reflections

Refinement

Refinement on F^2 H-atom parameters constrained Least-squares matrix: full $w = 1/[\sigma^2(F_o^2) + (0.0649P)^2 + 0.2378P]$ $R[F^2 > 2\sigma(F^2)] = 0.041$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.111$ $(\Delta/\sigma)_{\rm max} = 0.001$ S = 1.08 $\Delta \rho_{\rm max} = 0.78 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.48 \ {\rm e} \ {\rm \AA}^{-3}$ 1129 reflections 92 parameters Extinction correction: SHELXL2014 0 restraints (Sheldrick, 2015), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Primary atom site location: iterative Hydrogen site location: inferred from Extinction coefficient: 0.017 (4) neighbouring sites

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.37251 (12)	0.44459 (3)	0.83589 (4)	0.0390 (3)	
N2	-0.1257 (9)	0.1890 (2)	0.9772 (3)	0.0275 (8)	
N1	0.1085 (9)	0.2690 (2)	0.8197 (3)	0.0291 (8)	
N3	-0.2878 (11)	0.1067 (3)	0.9961 (3)	0.0381 (10)	
N4	-0.1505 (10)	0.1167 (3)	0.8052 (3)	0.0360 (10)	
C2	0.1125 (11)	0.3336 (3)	1.0154 (4)	0.0322 (10)	
H2	0.1769	0.3830	1.0655	0.039*	
C3	0.1746 (10)	0.3359 (3)	0.8956 (3)	0.0255 (9)	
C1	-0.0434 (12)	0.2578 (3)	1.0557 (4)	0.0347 (11)	
H1	-0.0924	0.2530	1.1341	0.042*	
C4	-0.0482 (11)	0.1944 (3)	0.8616(3)	0.0241 (9)	
C5	-0.2909 (13)	0.0680 (3)	0.8910 (4)	0.0365 (11)	
Н5	-0.3859	0.0093	0.8763	0.044*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
Br1	0.0447 (4)	0.0354 (4)	0.0366 (4)	-0.00695 (19)	0.0006 (2)	0.00610 (18)
N2	0.0334 (19)	0.0306 (19)	0.0184 (17)	-0.0009 (16)	0.0018 (15)	0.0026 (15)
N1	0.037 (2)	0.031 (2)	0.0200 (18)	0.0021 (16)	0.0045 (16)	0.0020 (15)
N3	0.058 (3)	0.031 (2)	0.025 (2)	-0.0082 (19)	0.0050 (18)	0.0059 (16)
N4	0.053 (3)	0.030(2)	0.0250 (19)	-0.0032 (18)	0.0038 (18)	-0.0064 (16)
C2	0.042 (3)	0.030 (2)	0.023 (2)	-0.002 (2)	-0.0011 (19)	-0.0063 (18)
C3	0.022 (2)	0.032 (2)	0.023 (2)	0.0001 (17)	-0.0014 (16)	0.0024 (17)
C1	0.052 (3)	0.039 (3)	0.014 (2)	-0.001(2)	0.004 (2)	-0.0020 (18)
C4	0.031 (2)	0.026 (2)	0.0147 (18)	0.0048 (18)	-0.0008 (16)	-0.0004 (16)
C5	0.042 (3)	0.030 (2)	0.036 (3)	-0.006 (2)	-0.005 (2)	-0.001 (2)

Geometric parameters (Å, °)

Br1—C3	1.893 (4)	N4—C4	1.331 (6)	
N2—N3	1.367 (5)	N4—C5	1.354 (6)	
N2—C1	1.353 (5)	C2—H2	0.9300	
N2—C4	1.375 (5)	C2—C3	1.403 (6)	
N1—C3	1.303 (5)	C2—C1	1.347 (6)	
N1—C4	1.342 (5)	C1—H1	0.9300	
N3—C5	1.316 (6)	С5—Н5	0.9300	
N3—N2—C4	110.0 (3)	C2—C3—Br1	118.5 (3)	
C1—N2—N3	128.0 (3)	N2—C1—H1	121.4	
C1—N2—C4	121.9 (4)	C2—C1—N2	117.2 (4)	
C3—N1—C4	115.2 (3)	C2—C1—H1	121.4	
C5—N3—N2	101.0 (3)	N1—C4—N2	121.9 (4)	
C4—N4—C5	102.2 (4)	N4—C4—N2	109.3 (4)	
С3—С2—Н2	121.0	N4—C4—N1	128.8 (4)	

C1—C2—H2	121.0	N3—C5—N4	117.5 (4)
C1—C2—C3	117.9 (4)	N3—C5—H5	121.3
N1—C3—Br1	115.8 (3)	N4—C5—H5	121.3
N1—C3—C2	125.8 (4)		
N2—N3—C5—N4	-0.6 (6)	C1—C2—C3—Br1	176.9 (4)
N3—N2—C1—C2	-178.9 (4)	C1—C2—C3—N1	-3.3 (7)
N3—N2—C4—N1	179.2 (4)	C4—N2—N3—C5	1.0 (5)
N3—N2—C4—N4	-1.2 (5)	C4—N2—C1—C2	1.4 (6)
C3—N1—C4—N2	-1.3 (6)	C4—N1—C3—Br1	-176.6 (3)
C3—N1—C4—N4	179.1 (4)	C4—N1—C3—C2	3.5 (6)
C3—C2—C1—N2	0.6 (6)	C4—N4—C5—N3	-0.1 (6)
C1—N2—N3—C5	-178.7 (4)	C5—N4—C4—N2	0.7 (5)
C1—N2—C4—N1	-1.1 (6)	C5—N4—C4—N1	-179.6 (4)
C1—N2—C4—N4	178.6 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1···N1 ⁱ	0.93	2.52	3.421 (6)	164
C5—H5···N3 ⁱⁱ	0.93	2.61	3.321 (6)	133

Symmetry codes: (i) x-1/2, -y+1/2, z+1/2; (ii) -x-1, -y, -z+2.