ON SPECTRA OF VARIANTS OF THE CORONA OF TWO GRAPHS AND SOME NEW EQUIENERGETIC GRAPHS

CHANDRASHEKAR ADIGA AND B.R. RAKSHITH

Department of Studies in Mathematics
University of Mysore, Manasagangothri
Mysore – 570 006, India

e-mail: c.adiga@hotmail.com
ranmsc08@yahoo.co.in

Abstract

Let G and H be two graphs. The join $G \vee H$ is the graph obtained by joining every vertex of G with every vertex of H. The corona $G \circ H$ is the graph obtained by taking one copy of G and $|V(G)|$ copies of H and joining the i-th vertex of G to every vertex in the i-th copy of H. The neighborhood corona $G \star H$ is the graph obtained by taking one copy of G and $|V(G)|$ copies of H and joining the neighbors of the i-th vertex of G to every vertex in the i-th copy of H. The edge corona $G \diamond H$ is the graph obtained by taking one copy of G and $|E(G)|$ copies of H and joining each terminal vertex of the i-th edge of G to every vertex in the i-th copy of H. Let G_1, G_2, G_3 and G_4 be regular graphs with disjoint vertex sets. In this paper we compute the spectrum of $(G_1 \vee G_2) \cup (G_1 \star G_3)$, $(G_1 \vee G_2) \cup (G_2 \star G_3) \cup (G_1 \star G_4)$, $(G_1 \vee G_2) \cup (G_1 \star G_3) \cup (G_1 \circ G_4)$, $(G_1 \vee G_2) \cup (G_1 \circ G_3) \cup (G_1 \circ G_4)$, $(G_1 \vee G_2) \cup (G_1 \circ G_3)$, $(G_1 \vee G_2) \cup (G_2 \circ G_3) \cup (G_1 \circ G_4)$, $(G_1 \vee G_2) \cup (G_2 \circ G_3)$, $(G_1 \circ G_4)$, $(G_1 \vee G_2) \cup (G_1 \circ G_3)$, $(G_1 \circ G_2)$, $(G_1 \vee G_2) \cup (G_2 \circ G_3)$ and $(G_1 \circ G_2) \cup (G_2 \circ G_3) \cup (G_1 \circ G_4)$.

As an application, we show that there exist some new pairs of equienergetic graphs on n vertices for all $n \geq 11$.

Keywords: spectrum, corona, neighbourhood corona, edge corona, energy of a graph, equienergetic graphs.

2010 Mathematics Subject Classification: 05C50.

1. Introduction

Throughout this paper we consider only undirected simple graphs (i.e., graphs with no loops and multiple edges). Let G be a graph on n vertices. The eigenvalues of the adjacency matrix of G, denoted by $\lambda_i(G)$, $i = 1, 2, \ldots, n$, are
the eigenvalues of the graph G and $\sigma(G) = (\lambda_1(G), \lambda_2(G), \ldots, \lambda_n(G))$, where $\lambda_1(G) \geq \lambda_2(G) \geq \cdots \geq \lambda_n(G)$ is the adjacency spectrum of G \[8\]. The energy $E(G)$ is the sum of all absolute values of eigenvalues of G. The concept of energy of a graph was introduced by Gutman \[12\] with an application to chemistry (Huckel molecular orbital approximation for the total π-electron energy \[14\]). The energy and various forms of energy of a graph G has been extensively studied by many mathematicians and some of their works can be found in \[1, 2, 3, 5, 13, 15, 19, 21, 28, 27\] and references therein. Two graphs G_1 and G_2 of the same order are said to be equienergetic if $E(G_1) = E(G_2)$. The energy and various forms of energy of a graph G has been extensively studied by many mathematicians and some of their work can be found in \[14\]). The energy and various forms of energy of a graph G has been extensively studied by many mathematicians and some of their works can be found in \[4, 7, 10, 24\]. The neighborhood corona and edge corona was introduced in \[17\], respectively. Complete description of the spectrum of neighborhood corona and edge corona of two graphs are given in \[17, 23\] and references therein.

Later Liu et al. \[22\] and Ramane, Walikar \[26\] have independently proved that there exists a pair of equienergetic graphs on n vertices for all $n \geq 9$. Studies on equienergetic graphs can be found in \[6, 11, 18, 22, 25, 26, 29\] and references therein.

The corona of two graphs was first introduced by Frucht and Harary in \[10\]. Barik et al. \[4\] provided a complete description of the spectrum of corona $G_1 \circ G_2$ using the spectrum of G_1 and G_2. More about the spectrum of corona can be found in \[4, 7, 10, 24\]. The neighborhood corona and edge corona was introduced in \[17\] and in \[16\], respectively. Complete description of the spectrum of neighborhood corona and edge corona of two graphs are given in \[17, 23\] and \[16\], respectively.

Motivated by the above works, in this paper we compute the spectrum of $(G_1 \vee G_2) \cup (G_1 \ast G_3)$, $(G_1 \vee G_2) \cup (G_2 \ast G_3) \cup (G_1 \ast G_4)$, $(G_1 \vee G_2) \cup (G_1 \circ G_3)$, $(G_1 \vee G_2) \cup (G_2 \circ G_3) \cup (G_1 \circ G_4)$, $(G_1 \vee G_2) \cup (G_1 \circ G_3)$, $(G_1 \vee G_2) \cup (G_2 \circ G_3) \cup (G_1 \circ G_4)$, $(G_1 \vee G_2) \cup (G_2 \circ G_3) \cup (G_1 \ast G_3)$, $(G_1 \vee G_2) \cup (G_2 \circ G_3) \cup (G_1 \circ G_4)$ and $(G_1 \vee G_2) \cup (G_2 \ast G_3) \cup (G_1 \circ G_4)$, when G_1, G_2, G_3 and G_4 are regular graphs. Here the graphs G_1, G_2, G_3 and G_4 have disjoint vertex sets. As an application of our results we construct some new pairs of equienergetic graphs on n vertices for all $n \geq 11$. Our method of construction and proofs are entirely different from the methods given in \[18, 22, 26\].

2. Preliminaries

In this section, we give some definitions and lemmas which are useful to prove our main results.

Definition \[10\]. Let G_1 and G_2 be two graphs on n and m vertices, respectively. The corona $G_1 \circ G_2$ of G_1 and G_2 is defined as the graph obtained by taking one
copy of G_1 and n copies of G_2, and then joining the i-th vertex of G_1 to every vertex in the i-th copy of G_2.

Definition [16]. Let G_1 and G_2 be two graphs on n_1 and n_2 vertices, m_1 and m_2 edges, respectively. The edge corona $G_1 \circ G_2$ of G_1 and G_2 is defined as the graph obtained by taking one copy of G_1 and m_1 copies of G_2, and then joining two end vertices of the i-th edge of G_1 to every vertex in the i-th copy of G_2.

Definition [17]. Let G_1 and G_2 be two graphs on n and m vertices, respectively. The neighborhood corona $G_1 \star G_2$ of G_1 and G_2 is defined as the graph obtained by taking one copy of G_1 and n copies of G_2, and then joining each neighbor of i-th vertex of G_1 to every vertex in the i-th copy of G_2.

Definition [8]. Let $A = (a_{ij})$ be an $n \times m$ matrix, $B = (b_{ij})$ be a $p \times q$ matrix. Then the Kronecker product $A \otimes B$ of A and B is the $np \times mq$ matrix obtained by replacing each entry a_{ij} of A by $a_{ij}B$.

Lemma 1 [8]. If M, N, P, Q are matrices with M being a non-singular matrix, then

$$\det(MN - PQ) = |M||Q - PM^{-1}N|.$$

Lemma 2 [26]. Let N_1 and N_2 be two graphs as shown in Figure 1. Then the line graph $L(N_1)$ of N_1 and the line graph $L(N_2)$ of N_2 are non cospectral and equienergetic.

Figure 1

Lemma 3 [8]. The following cubic regular graphs with ten vertices are equienergetic.
3. Spectra of \((G_1 \lor G_2) \cup (G_1 \ast G_3)\) and \((G_1 \lor G_2) \cup (G_2 \ast G_3) \cup (G_1 \ast G_4)\)

In this section, we compute the spectrum of \((G_1 \lor G_2) \cup (G_1 \ast G_3)\) and \((G_1 \lor G_2) \cup (G_2 \ast G_3) \cup (G_1 \ast G_4)\), where \(G_1, G_2, G_3\) and \(G_4\) are regular graphs on \(n, m, l\) and \(p\) vertices, respectively.

Theorem 4. Let \(G_i\) be \(r_i\)-regular graphs \((i = 1, 2, 3)\). Suppose \(\sigma(G_1) = (\lambda_1 = r_1, \lambda_2, \ldots, \lambda_n)\), \(\sigma(G_2) = (\mu_1 = r_2, \mu_2, \ldots, \mu_m)\) and \(\sigma(G_3) = (\gamma_1 = r_3, \gamma_2, \ldots, \gamma_l)\) are the adjacency spectrum of \(G_1, G_2\) and \(G_3\), respectively. Then the adjacency spectrum of \(G = (G_1 \lor G_2) \cup (G_1 \ast G_3)\) is

\[
\sigma(G) = \begin{pmatrix}
\gamma_i & \mu_j & 1 + \frac{\sqrt{4l\lambda_k^2 + (\lambda_k - r_3)^2}}{2} & x_t \\
n & 1 & 1 & 1
\end{pmatrix},
\]

where \(i = 2\) to \(l\), \(j = 2\) to \(m\), \(k = 2\) to \(n\), \(t = 1, 2, 3\). Also, the entries in the first row are the eigenvalues with multiplicity written below, and \(x_t\)'s are the roots of the polynomial \((x - r_2) ((x - r_1)(x - r_3) - lr_1^2) - nm(x - r_3)\).

Proof. With suitable labelling of the vertices of \(G\), the adjacency matrix \(A(G)\) can be formulated as follows:

\[
A(G) = \begin{pmatrix}
I_n \otimes A(G_3) & 0 & A(G_1) \otimes e \\
0 & A(G_2) & J \\
A(G_1) \otimes e^T & J^T & A(G_1)
\end{pmatrix},
\]

where \(e^T = (1, 1, \ldots, 1)\), \(I_n\) is the identity matrix of order \(n\) and \(J\) is the \(m \times n\) matrix with all its entries are 1.
Since $A(G_3)$ is a real symmetric matrix, $A(G_3)$ is orthogonally diagonalizable. Let $A(G_3) = PDP^T$, where $PP^T = I_l$ and $D = diag(\gamma_1, \ldots, \gamma_l)$. Then

$$A(G) = \begin{pmatrix} I_n \otimes PDP^T & 0 & A(G_1) \otimes e^T \\ 0 & A(G_2) & J \\ A(G_1) \otimes e^T & J^T & A(G_1) \end{pmatrix}$$

$$= \begin{pmatrix} I_n \otimes P & 0 & 0 \\ 0 & I_n \otimes D & 0 & A(G_1) \otimes P^T e^T \\ 0 & A(G_1) \otimes e^T P & J^T & A(G_1) \end{pmatrix} = \begin{pmatrix} I_n \otimes P^T & 0 \\ 0 & I_n \otimes D & 0 & A(G_1) \otimes \sqrt{\lambda_1} e_1^T \\ 0 & A(G_1) \otimes \sqrt{\lambda_1} e_1^T & J^T & A(G_1) \end{pmatrix}$$

Let $B = \begin{pmatrix} I_n \otimes D & 0 & A(G_1) \otimes \sqrt{\lambda_1} e_1^T \\ 0 & A(G_2) & J \\ A(G_1) \otimes \sqrt{\lambda_1} e_1^T & J^T & A(G_1) \end{pmatrix}$.

Then by the above equation we have

$$(2) \quad |xI - A(G)| = |xI - B|.$$
Again as \(A(G_1) \) and \(A(G_2) \) are orthogonally diagonalizable, one can easily see that the \(M_i \) is the same as

\[
M'_i = \begin{pmatrix}
(x - r_3)I_n & 0 & -\sqrt{m} \text{diag}(\lambda_1, \ldots, \lambda_n) \\
0 & \text{diag}(x - \mu_1, \ldots, x - \mu_m) & -\sqrt{mn}J' \\
-\sqrt{m} \text{diag}(\lambda_1, \ldots, \lambda_n) & -\sqrt{mn}J'^T & \text{diag}(x - \lambda_1, \ldots, x - \lambda_n)
\end{pmatrix},
\]

where \(J' \) is the matrix obtained by replacing every entries of \(J \) except the first diagonal entry by 0. Now by (1), we have

\[
M'_i = (x - r_3)^n
\]

(5) \[
\times \begin{pmatrix}
\text{diag}(x - r_2, x - \mu_2, \ldots, x - \mu_m) & -\sqrt{mn}J' \\
-\sqrt{mn}J'^T & \text{diag}(x - \lambda_1 - l\lambda_2/(x - r_3), \ldots, x - \lambda_n - l\lambda_n^2/(x - r_3))
\end{pmatrix}
\]

Applying Laplace method along \(2, \ldots, m, m + 2, \ldots, m + n \) columns in the above determinant we see that the only non zero \(m + n - 2 \times m + n - 2 \) minor is \(\text{diag}(x - \mu_2, \ldots, x - \mu_m, x - \lambda_2 - l\lambda_2/(x - r_3), \ldots, x - \lambda_n - l\lambda_n^2/(x - r_3)) \) and the complementary minor is

\[
M_1 = \begin{vmatrix}
x - \mu_2 & -\sqrt{mn} \\
-\sqrt{mn} & x - \lambda_2 - l\lambda_2^2/(x - r_3)
\end{vmatrix}.
\]

And so by (2), (3), (4), (5) and from the above equation the result follows. \(\blacksquare \)

Corollary 5. Let \(G_i \) be \(r_i \)-regular graphs \((i = 1, 2)\). Then

\[
E(G_1 \lor G_2 \cup G_1 \ast lK_1) = \sqrt{4l + 1}E(G_1) + E(G_2) - r_1(\sqrt{4l + 1} - 1) - 2x_0,
\]

where \(x_0 \) is the negative root of the polynomial \((x - r_2)\left((x - r_1) x - h_r^2\right) - nmx \).

Remark 6. Corollary 5 is a generalization of Theorem 1 in [18]. In fact putting \(r_1 = r, n = p, r_2 = 0, m = k, r_3 = 0, l = 1 \) in Corollary 5, we obtain Theorem 1 due to Indulal and Vijayakumar [18].

Corollary 7. Let \(G_i \) \((i = 1, 2)\) be equienergetic regular graphs of the same degree and \(H_i \) \((i = 1, 2)\) be equienergetic regular graphs of the same degree. Then

\[
E(G_1 \lor H_1 \cup G_1 \ast lK_1) = E(G_2 \lor H_2 \cup G_2 \ast lK_1).
\]

Now we construct some new pairs of equienergetic graphs using Corollary 7.

Theorem 8. There exists a pair of equienergetic graphs on \(n \) vertices for all \(n \geq 18 \).
Proof. From Lemma 2 we have the line graphs $L(N_1)$ and $L(N_2)$ are equienergetic. Now by Corollary 7 it is clear that the graphs $(L(N_1) \vee K_m) \cup (L(N_1) \ast K_1)$ and $(L(N_2) \vee K_m) \cup (L(N_2) \ast K_1)$, both of order $18 + m$ ($m = 0, 1, \ldots$), are equienergetic. This completes the proof of the theorem.

Theorem 9. There exists a pair of equienergetic graphs on n vertices for all $n \geq 20$.

Proof. From Lemma 3 and Corollary 7 it is clear that the graphs $(T_1 \vee K_m) \cup (T_1 \ast K_1)$ and $(T_2 \vee K_m) \cup (T_2 \ast K_1)$, both of order $20 + m$ ($m = 0, 1, \ldots$), are equienergetic.

Theorem 10. There exists a pair of equienergetic graphs on n vertices for all $n \geq 13$.

Proof. Case 1. $n = 9 + 2m$ ($m = 2, 3, \ldots$). For $n = 9 + 2m$ ($m = 2, 3, \ldots$), the graphs $(K_m \vee L(N_1)) \cup (K_m \ast K_1)$ and $(K_m \vee L(N_2)) \cup (K_m \ast K_1)$ both are of order $9 + 2m$ ($m = 2, 3, \ldots$). Now, Corollary 7 implies that these two graphs are equienergetic.

Case 2. $n = 10 + 2m$ ($m = 2, 3, \ldots$). For $n = 10 + 2m$ ($m = 2, 3, \ldots$), the graphs $(K_m \vee T_1) \cup (K_m \ast K_1)$ and $(K_m \vee T_2) \cup (K_m \ast K_1)$ both are of order $10 + 2m$ ($m = 2, 3, \ldots$). Now, Corollary 7 implies that these two graphs are equienergetic.

As the proof of the following theorem is similar to that of Theorem 4, we omit the details.

Theorem 11. Let G_i be r_i-regular graphs ($i = 1, 2, 3, 4$). Suppose $\sigma(G_1) = (\lambda_1 = r_1, \lambda_2, \ldots, \lambda_n)$, $\sigma(G_2) = (\mu_1 = r_2, \mu_2, \ldots, \mu_m)$, $\sigma(G_3) = (\gamma_1 = r_3, \gamma_2, \ldots, \gamma_l)$ and $\sigma(G_4) = (\eta_1 = r_4, \eta_2, \ldots, \eta_p)$ are the adjacency spectrum of G_1, G_2, G_3 and G_4, respectively. Then the adjacency spectrum of $G = (G_1 \vee G_2) \cup (G_2 \ast G_3) \cup (G_1 \ast G_4)$ is

$$\sigma(G) = \begin{pmatrix} \gamma_i & \eta_j \\ m & n \end{pmatrix} \begin{pmatrix} \lambda_k + r_4 \pm \sqrt{4p\lambda_k^2 + (\lambda_k - r_4)^2} \\ 1 \end{pmatrix} / 2$$

$$\begin{pmatrix} \mu_s + r_3 \pm \sqrt{4l\mu_s^2 + (\mu_s - r_3)^2} \\ 1 \end{pmatrix} / 2$$

$$x_t,$$

where $i = 2$ to l, $j = 2$ to p, $k = 2$ to n, $s = 2$ to m, $t = 1, 2, 3, 4$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_t’s are the roots of the polynomial

$$(x - r_1)(x - r_4) - pr_1^2 \left((x - r_2)(x - r_3) - lr_2^2 \right) - nm(x - r_3)(x - r_4).$$
Corollary 12. Let G_i be r_i-regular graphs $(i = 1, 2)$. Then
\[
E(G_1 \vee G_2 \cup G_2 \star lK_1 \cup G_1 \star pK_1) = \sqrt{4p+1}E(G_1) + \sqrt{4l+1}E(G_2) - r_2(\sqrt{4l+1} - 1) \\
- r_1(\sqrt{4p+1} - 1) - 2x_0 - 2x_1,
\]
where x_0 and x_1 are the negative roots of the polynomial
\[
x^4 - (r_1 + r_2)x^3 + (-r_1^2p - lr_2^2 + r_1r_2 - mn)x^2 + (r_1^2r_2p + r_1r_2^2l)x + r_1^2r_2^2lp.
\]

Corollary 13. Let G_1, G_2 be equienergetic regular graphs of the same degree and H_1, H_2 be equienergetic regular graphs of the same degree. Then
\[
E(G_1 \vee H_1 \cup H_1 \star lK_1 \cup G_1 \star pK_1) = E(G_2 \vee H_2 \cup H_2 \star lK_1 \cup G_2 \star pK_1).
\]

4. Spectra of $(G_1 \vee G_2) \cup (G_1 \circ G_3)$ and $(G_1 \vee G_2) \cup (G_2 \circ G_3) \cup (G_1 \circ G_4)$

In this section, we simply state some theorems (as the proofs are quite analogous to the proof of Theorem 4) which gives the spectrum of $(G_1 \vee G_2) \cup (G_1 \circ G_3)$ and $(G_1 \vee G_2) \cup (G_2 \circ G_3) \cup (G_1 \circ G_4)$, where G_1, G_2, G_3, and G_4 are regular graphs on n, m, l, and p vertices, respectively.

Theorem 14. Let G_i be r_i-regular graphs $(i = 1, 2, 3)$. Suppose $\sigma(G_1) = (\lambda_1 = r_1, \lambda_2, \ldots, \lambda_n)$, $\sigma(G_2) = (\mu_1 = r_2, \mu_2, \ldots, \mu_m)$ and $\sigma(G_3) = (\gamma_1 = r_3, \gamma_2, \ldots, \gamma_t)$ are the adjacency spectrum of G_1, G_2, and G_3, respectively. Then the adjacency spectrum of $G = (G_1 \vee G_2) \cup (G_1 \circ G_3)$ is
\[
\sigma(G) = \left(\begin{array}{cccc}
\gamma_i & \mu_j & x_t & 0 \\
-1 & -1 & 1 & 1 \\
\lambda_k + r_3 \pm \sqrt{4l + (\lambda_k - r_3)^2} / 2 & x_t & 1 & 1 \\
\end{array}\right),
\]
where $i = 2$ to l, $j = 2$ to m, $k = 2$ to n, $t = 1, 2, 3$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_t's are the roots of the polynomial $(x - r_2)((x - r_1)(x - r_3) - l) - nm(x - r_3)$.

Theorem 15. Let G be an r-regular graph of order m. Then
\[
E(K_n \vee G \cup K_n \circ lK_1) = E(G) + (n - 1)\sqrt{4l+1} - 2x_0 + n - 1,
\]
where x_0 is the negative root of the polynomial $(x - r)(x(x - (n - 1)) - l) - nmx$.

Corollary 16. Let G and H be equienergetic regular graphs of the same degree. Then
\[
E(K_n \vee G \cup K_n \circ lK_1) = E(K_n \vee H \cup K_n \circ lK_1).
\]
Theorem 17. Let G be an r-regular graph of order m. Then

$$E(nK_1 \vee G \cup nK_1 \circ lK_1) = E(G) + (n - 1)\sqrt{4l} - 2x_0,$$

where x_0 is the negative root of the polynomial $(x - r) (x^2 - l) - nm x$.

Corollary 18. Let G and H be equienergetic regular graphs of the same degree. Then

$$E(nK_1 \vee G \cup nK_1 \circ lK_1) = E(nK_1 \vee H \cup nK_1 \circ lK_1).$$

Now we construct some new pairs of equienergetic graphs using Corollary 16.

Theorem 19. There exists a pair of equienergetic graphs on n vertices for all $n \geq 11$.

Proof. Case 1. $n = 9 + 2m$ ($m = 1, 2, \ldots$). For $n = 9 + 2m$ ($m = 1, 2, \ldots$), the graphs $(K_m \vee L(N_1)) \cup (K_m \circ K_1)$ and $(K_m \vee L(N_2)) \cup (K_m \circ K_1)$ both are of order $9 + 2m$ ($m = 1, 2, \ldots$). Now, Corollary 16 implies that these two graphs are equienergetic.

Case 2. $n = 10 + 2m$ ($m = 1, 2, \ldots$). For $n = 10 + 2m$ ($m = 1, 2, \ldots$), the graphs $(K_m \vee T_1) \cup (K_m \circ K_1)$ and $(K_m \vee T_2) \cup (K_m \circ K_1)$ both are of order $10 + 2m$ ($m = 1, 2, \ldots$). Now, Corollary 16 implies that these two graphs are equienergetic. □

Theorem 20. Let G_i be r_i-regular graphs ($i = 1, 2, 3, 4$). Suppose $\sigma(G_1) = (\lambda_1 = r_1, \lambda_2, \ldots, \lambda_n)$, $\sigma(G_2) = (\mu_1 = r_2, \mu_2, \ldots, \mu_m)$, $\sigma(G_3) = (\gamma_1 = r_3, \gamma_2, \ldots, \gamma_l)$ and $\sigma(G_4) = (\eta_1 = r_4, \eta_2, \ldots, \eta_s)$ are the adjacency spectrum of G_1, G_2, G_3 and G_4, respectively. Then the adjacency spectrum of $G = (G_1 \vee G_2) \cup (G_2 \circ G_3) \cup (G_1 \circ G_4)$ is

$$\sigma(G) = \begin{pmatrix} \gamma_i & \eta_j & \lambda_k + r_4 \pm \sqrt{4p + (\lambda_k - r_4)^2} / 2 \\ m & n & 1 \\ \mu_s + r_3 \pm \sqrt{4l + (\mu_s - r_3)^2} / 2 & x_t & 1 \end{pmatrix},$$

where $i = 2$ to l, $j = 2$ to p, $k = 2$ to n, $s = 2$ to m, $t = 1, 2, 3, 4$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_t’s are the roots of the polynomial

$$(x - r_1) (x - r_4 - p) ((x - r_2) (x - r_3) - l) - nm (x - r_3) (x - r_4).$$
In Theorems 21 and 25 of this section, we compute the spectrum of \((G_1 \lor G_2) \cup (G_1 \circ G_3)\) and \((G_1 \lor G_2) \cup (G_2 \circ G_3) \cup (G_1 \circ G_4)\), where \(G_1, G_2, G_3\) and \(G_4\) are regular graphs on \(n, m, l\) and \(p\) vertices, respectively. Proofs of these theorems are not given as they are similar to the proof of Theorem 4.

Theorem 21. Let \(G_i\) be \(r_i\)-regular graphs \((i = 1, 2, 3)\) and \(r_1 \geq 2\). Suppose \(\sigma(G_1) = (\lambda_1 = r_1, \lambda_2, \ldots, \lambda_n)\), \(\sigma(G_2) = (\mu_1 = r_2, \mu_2, \ldots, \mu_m)\) and \(\sigma(G_3) = (\gamma_1 = r_2, \gamma_2, \ldots, \gamma_l)\) are the adjacency spectrum of \(G_1\), \(G_2\) and \(G_3\), respectively. Then the adjacency spectrum of \(G = (G_1 \lor G_2) \cup (G_1 \circ G_3)\) is

\[
\sigma(G) = \left[\begin{array}{c c c}
\gamma_1 & r_3 & \mu_j \\
(\gamma_1 n/2) & (r_3 n/2) & 1 \\
1 & 1 & 1
\end{array} \right],
\]

where \(i = 2\) to \(l\), \(j = 2\) to \(m\), \(k = 2\) to \(n\), \(t = 1, 2, 3\). Also, the entries in the first row are the eigenvalues with multiplicity written below, and \(x_t\)'s are the roots of the polynomial \((x - r_2) (x - r_1) (x - r_3) - 2lr_1 - nm (x - r_3)\).

Theorem 22. Let \(G\) be an \(r\)-regular graph of order \(m\). Then

\[
E(K_n \lor G \cup K_n \circ lK_1) = E(G) + (n - 1)((\sqrt{4l + n - 2} + 1) - 2x_0),
\]

where \(x_0\) is the negative root of the polynomial

\[
x^3 - (n - 1 + r)x^2 + ((n - 1)r - 2n - 1)l - mn)x + 2(n - 1)rl.
\]

Corollary 23. Let \(G\) and \(H\) be equienergetic regular graphs of the same degree. Then

\[
E(K_n \lor G \cup K_n \circ lK_1) = E(K_n \lor H \cup K_n \circ lK_1).
\]

Now we construct some new pairs of equienergetic graphs using Corollary 23.

Theorem 24. There exists a pair of equienergetic graphs on \(n\) vertices for all \(n \geq 15\).

Proof. Case 1. Let \(n = 9 + 2m\) \((m = 3, 4, \ldots)\) and \(C_m\) be the cycle of length \(m\). Then, by Corollary 23 and Lemma 2 the graphs \((C_m \lor L(N_1)) \cup (C_m \circ K_1)\) and \((C_m \lor L(N_2)) \cup (C_m \circ K_1)\), both of order \(9 + 2m\) \((m = 3, 4, \ldots)\), are equienergetic.

Case 2. \(n = 10 + 2m\) \((m = 3, 4, \ldots)\). For \(n = 10 + 2m\) \((m = 3, 4, \ldots)\), the graphs \((C_m \lor T_1) \cup (C_m \circ K_1)\) and \((C_m \lor T_2) \cup (C_m \circ K_1)\) both are of order \(9 + 2m\) \((m = 3, 4, \ldots)\). Now, Corollary 23 and Lemma 3 implies that these two graphs are equienergetic. ■
In this section we just give the spectrum of the entries in the first row are the eigenvalues with multiplicity written below, and, respectively. Then the adjacency spectrum of \(G = (G_1 \lor G_2) \lor (G_2 \lor G_3) \lor (G_1 \lor G_4) \) is

\[
\sigma(G) = \begin{pmatrix}
\gamma_i & r_3 & \eta_j & r_4 \\
\frac{r_2 n}{2} & (r_2 - 2)n/2 & \frac{r_3 n}{2} & (r_1 - 2)n/2 \\
1 & \frac{\lambda_4 + \sqrt{4p(\lambda_k + r_4) + (\lambda_k - r_4)^2}}{2} & \frac{\mu_4 + \sqrt{4l(\mu_s + r_4) + (\mu_s - r_4)^2}}{2} & x_i \\
1 & 1 & 1 & 1
\end{pmatrix},
\]

where \(i = 2 \) to \(l \), \(j = 2 \) to \(p \), \(k = 2 \) to \(n \), \(s = 2 \) to \(m \), \(t = 1, 2, 3, 4 \). Also, the entries in the first row are the eigenvalues with multiplicity written below, and \(x_i \)'s are the roots of the polynomial

\[
((x - r_1)(x - r_4) - 2pr_4)((x - r_2)(x - r_3) - 2r_2l) - nm(x - r_3)(x - r_4).
\]

6. Spectra of \((G_1 \lor G_2) \lor (G_2 \lor G_3) \lor (G_1 \lor G_4) \)

In this section we just give the spectrum of \((G_1 \lor G_2) \lor (G_2 \lor G_3) \lor (G_1 \lor G_4) \), \((G_1 \lor G_2) \lor (G_2 \lor G_3) \lor (G_1 \lor G_4) \) and \((G_1 \lor G_2) \lor (G_2 \lor G_3) \lor (G_1 \lor G_4) \), where \(G_1, G_2, G_3 \) and \(G_4 \) are regular graphs on \(n, m, l \) and \(p \) vertices, respectively. Proofs of Theorems 26–28 are similar to the proof of Theorem 4.

Theorem 26. Let \(G_i \) be \(r_i \)-regular graphs \((i = 1, 2, 3, 4) \), \(r_1 \geq 2 \) and \(r_2 \geq 2 \). Suppose \(\sigma(G_1) = (\lambda_1 = r_1, \lambda_2, \ldots, \lambda_n), \sigma(G_2) = (\mu_1 = r_2, \mu_2, \ldots, \mu_m), \sigma(G_3) = (\gamma_1 = r_3, \gamma_2, \ldots, \gamma_l) \) and \(\sigma(G_4) = (\eta_1 = r_4, \eta_2, \ldots, \eta_p) \) are the adjacency spectrum of \(G_1, G_2, G_3 \) and \(G_4 \), respectively. Then the adjacency spectrum of \(G = (G_1 \lor G_2) \lor (G_2 \lor G_3) \lor (G_1 \lor G_4) \) is

\[
\sigma(G) = \begin{pmatrix}
\gamma_i & \eta_j & \sqrt{4p(\lambda_k + r_4) + (\lambda_k - r_4)^2}/2 \\
\sqrt{4l(\mu_s + r_4) + (\mu_s - r_4)^2}/2 & x_i \\
1 & 1 & 1 & 1
\end{pmatrix},
\]

where \(i = 2 \) to \(l \), \(j = 2 \) to \(p \), \(k = 2 \) to \(n \), \(s = 2 \) to \(m \), \(t = 1, 2, 3, 4 \). Also, the entries in the first row are the eigenvalues with multiplicity written below, and \(x_i \)'s are the roots of the polynomial

\[
((x - r_2)(x - r_3) - l)((x - r_1)(x - r_4) - pr_4) - nm(x - r_3)(x - r_4).
\]
\textbf{Theorem 27.} Let G_i be r_i-regular graphs $(i = 1, 2, 3, 4)$ and $r_i \geq 2$. Suppose $\sigma(G_1) = (\lambda_1 = r_1, \lambda_2, \ldots, \lambda_n)$, $\sigma(G_2) = (\mu_1 = r_2, \mu_2, \ldots, \mu_n)$, $\sigma(G_3) = (\gamma_1 = r_3, \gamma_2, \ldots, \gamma_l)$ and $\sigma(G_4) = (\eta_1 = r_4, \eta_2, \ldots, \eta_p)$ are the adjacency spectrum of G_1, G_2, G_3 and G_4, respectively. Then the adjacency spectrum of $G = (G_1 \lor G_2) \cup (G_2 \lor G_3) \cup (G_1 \lor G_4)$ is
\[
\sigma(G) = \begin{pmatrix}
\gamma_i & \eta_j & r_4 \\
n & m & (r_1 - 2)n/2
\end{pmatrix}
\begin{pmatrix}
\lambda_k + r_4 \pm \sqrt{4p(\lambda_k + r_1) + (\lambda_k - r_4)^2} / 2 \\
1
\end{pmatrix}
\begin{pmatrix}
\mu_s + r_3 \pm \sqrt{4l + (\mu_s - r_3)^2} / 2 \\
1
\end{pmatrix}
\begin{pmatrix}
x_t \\
1
\end{pmatrix},
\]
where $i = 2$ to l, $j = 2$ to p, $k = 2$ to n, $s = 2$ to m, $t = 1, 2, 3, 4$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_t's are the roots of the polynomial
\[(x - r_1)(x - r_4) - 2pr_1)(x - r_2)(x - r_3) - l nm(x - r_3)(x - r_4).
\]

\textbf{Theorem 28.} Let G_i be r_i-regular graphs $(i = 1, 2, 3, 4)$ and $r_i \geq 2$. Suppose $\sigma(G_1) = (\lambda_1 = r_1, \lambda_2, \ldots, \lambda_n)$, $\sigma(G_2) = (\mu_1 = r_2, \mu_2, \ldots, \mu_n)$, $\sigma(G_3) = (\gamma_1 = r_3, \gamma_2, \ldots, \gamma_l)$ and $\sigma(G_4) = (\eta_1 = r_4, \eta_2, \ldots, \eta_p)$ are the adjacency spectrum of G_1, G_2, G_3 and G_4, respectively. Then the adjacency spectrum of $G = (G_1 \lor G_2) \cup (G_2 \lor G_3) \cup (G_1 \lor G_4)$ is
\[
\sigma(G) = \begin{pmatrix}
\gamma_i & \eta_j & r_4 \\
n & m & (r_1 - 2)n/2
\end{pmatrix}
\begin{pmatrix}
\lambda_k + r_4 \pm \sqrt{4p(\lambda_k + r_1) + (\lambda_k - r_4)^2} / 2 \\
1
\end{pmatrix}
\begin{pmatrix}
\mu_s + r_3 \pm \sqrt{4l + (\mu_s - r_3)^2} / 2 \\
1
\end{pmatrix}
\begin{pmatrix}
x_t \\
1
\end{pmatrix},
\]
where $i = 2$ to l, $j = 2$ to p, $k = 2$ to n, $s = 2$ to m, $t = 1, 2, 3, 4$. Also, the entries in the first row are the eigenvalues with multiplicity written below, and x_t's are the roots of the polynomial
\[(x - r_1)(x - r_4) - 2pr_1)(x - r_2)(x - r_3) - l nm(x - r_3)(x - r_4).
\]

\textbf{Acknowledgement}

The authors are thankful to the referee for useful suggestions. The first author is thankful to the University Grants Commission, Government of India, for the financial support under Grant F.510/2/SAP-DRS/2011. The second author is thankful to UGC, New Delhi, for UGC-JRF, under which this work has been done.
References

doi:10.1016/j.laa.2009.11.034

doi:10.1016/j.laa.2004.02.038

doi:10.1137/050624029

doi:10.2298/JSC0407549B

doi:10.1016/j.laa.2012.05.019

doi:10.1007/BF01844162

doi:10.2298/JSC0503441G

Received 29 April 2015
Revised 25 May 2015
Accepted 25 May 2015