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A B S T R A C T

Nitrogen-doped carbon quantum dots (NCQDs) have garnered considerable interest in energy storage applica
tions owing to their remarkable electrical characteristics and surface adaptability. In this regard, barium ferrite 
(BFO) nanocomposites with NCQDs have been incorporated due to their remarkable electrochemical perfor
mance in supercapacitors. Where NCQDs with an average particle size of about 3 nm were prepared using a 
simple hydrothermal approach and then combined with barium ferrite (BFO) to create a novel magnetic 
nanocomposite (BFO@NCQDs). The NCQDs functioned as structure-directing agents, facilitating exact regulation 
of the size, crystallinity, and shape of the BFO nanoparticles. The structural and morphological characteristics of 
the synthesized nanocomposite were thoroughly characterized using PXRD, Raman spectroscopy, FTIR, FE-SEM, 
and HRTEM. Magnetic studies revealed a saturation magnetisation (Ms) of 50.59 emu/g and a notably increased 
specific surface area (SABET) of 821.65 m2/g. Electrochemical assessments in a 5 M KOH electrolyte using a three- 
electrode configuration demonstrated exceptional performance, attaining a specific capacitance (Cs) of 1513.94 
F/g at a scan rate of 5 mV/s, by ascertained using cyclic voltammetry. Galvanostatic charge/discharge analysis 
confirmed a high specific capacitance of 1984.98 F/g at a current density of 2 A/g. The electrode exhibited 
remarkable energy and power densities, achieving 42.805 Wh/kg and 7565.43 W/kg, respectively, while sus
taining a power density of 2090.39 W/kg at peak energy output. The electrode material exhibited exceptional 
cycling stability, maintaining 91.1 % of its capacitance after 10,000 cycles at 12 A/g. The findings underscore 
BFO@NCQDs as an economical, highly conductive, and resilient electrode material, positioning it as a viable 
option for next-generation supercapacitors and portable electronic applications.

1. Introduction

The global transition toward renewable and sustainable energy sys
tems has intensified the need for efficient energy storage technologies. 
Among these, supercapacitors (SCs) have emerged as a promising so
lution due to their high power density, rapid charge–discharge rate, long 

cycle life, and economic feasibility [1–3]. Despite these advantages, SCs 
remain limited by their relatively low energy density, which signifi
cantly constrains their practical applications. The properties and nature 
of electrode materials are pivotal in influencing the electrochemical 
efficacy of SCs [4], necessitating the innovation of excellent- 
performance electrodes to attain SCs devices with elevated energy 
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density. Supercapacitors are generally categorized into electric double- 
layer capacitors (EDLCs), pseudocapacitors, and hybrid super
capacitors (HICs) [5–8]. EDLCs typically employ porous carbon mate
rials and store energy through electrostatic ion adsorption at the 
electrode/electrolyte interface. Although such materials offer excellent 
cycling stability, their capacitance is largely confined to surface area 
effects, limiting overall energy density [9–11]. To overcome this, inte
grating materials with both high surface area and faradaic activity is 
essential, enabling rapid charge transfer and efficient redox reactions 
[12].

Carbon quantum dots (CQDs), a subclass of carbon nanomaterials 
with dimensions below 10 nm, have recently attracted attention as 
electrode modifiers due to their remarkable physicochemical features. 
These include quantum confinement effects, tunable bandgap, excellent 
electron transport properties, and abundant surface functional groups 
such as hydroxyl, carboxyl, and aldehyde [13–16]. CQDs also offer 
stability, dispersibility, biocompatibility, and ease of synthesis, making 
them suitable for diverse applications in energy storage, catalysis, water 
treatment, and biomedicine [17–29]. Structurally, doping CQDs with 
heteroatoms (e.g., nitrogen) has been shown to enhance electronic 
characteristics and tune intrinsic properties, such as electronic and op
tical traits [30]. Nitrogen doping, in particular, introduces electron-rich 
active sites and enhances conductivity and redox kinetics, yielding 
nitrogen-doped CQDs (NCQDs) with superior electrochemical properties 
compared to undoped counterparts [31]. These features position NCQDs 
as highly promising for improving the performance of supercapacitor 
electrodes [12].

Parallel to carbon nanomaterials, ferrite-based compounds have 
gained attention for electrochemical energy storage due to their abun
dance, low-cost synthesis, and tunable electrical and magnetic proper
ties [32,33]. They can be prepared from inexpensive precursors under 
moderate conditions [34], and exist in diverse structural families, 
including spinel, garnet, and magneto-plumbite ferrites [35]. Among 
them, spinel ferrites have been widely investigated for applications in 
catalysis, memory devices, antimicrobial nanocomposites, and electro
magnetic absorbers owing to their chemical stability and magnetic 
versatility [36]. Among ferrites, barium ferrite (BaFe2O4, BFO) stands 
out as a magneto-plumbite structure with unique electrical and mag
netic properties, multiple redox-active sites, and structural robustness. 
These characteristics make BFO a potentially valuable but underutilized 
candidate for supercapacitor electrodes. Despite progress in both carbon 
nanomaterials and ferrites, there remains a lack of systematic studies 
combining NCQDs with ferrite compounds, particularly BFO.

To fill this gap, the present study reports the development of a novel 
electrode incorporating N-doped carbon quantum dots (NCQDs) mixed 
with barium ferrite BaFe2O4 (BFO) to create a magnetic nanocomposite 
(BFO@NCQDs) for supercapacitor applications in energy storage. The 
design enhances the synergistic interaction between the electron- 
donating/withdrawing functionalities of nitrogen dopants and the 
redox-active, magnetic properties of ferrite. The BFO@NCQDs magnetic 
nanocomposite exhibited excellent electrochemical properties due to its 
porous nature and large surface area, which provided numerous active 
sites for redox mechanisms. Overall, this work introduces BFO@NCQDs 
as a new class of electrode material for high-performance super
capacitors. By combining the unique advantages of NCQDs and ferrites, 
the nanocomposite demonstrates enhanced energy density and cycling 
stability, contributing to the advancement of sustainable energy storage 
technologies.

2. Materials and methodology

2.1. Precursors

The utilized chemicals acquired from Sigma Aldrich; Iron (III) nitrate 
nonahydrate (Fe(NO3)3⋅9H2O) purity 99.999 %, Barium nitrate Ba 
(NO3)2.4H2O (99.999 %), Citric acid (C6H8O7.H2O) 99.9 %, urea (purity 

99 %), Melamine (C3H6N6), and Sucrose (C12H22O11) were used to 
obtain the precipitate. Distilled water, acetone, and ethanol were used to 
wash off the sediment.

2.2. Synthesis of BFO@NCQDs magnetic nanocomposite

The synthesis of the BFO@NCQDs magnetic nanocomposite elec
trode for supercapacitor applications was carried out in three steps 
(Scheme 1). In the first step, N-doped carbon quantum dots (NCQDs) were 
produced utilizing melamine and sucrose as nitrogen and carbon sour
ces, respectively. Precisely, 0.126 g (16 wt%) of melamine was solubi
lized in 60 mL of nano pure water and agitated continuously at 70 ◦C for 
60 min. Subsequently, 1.7 g (0.005 mol) of sucrose was incorporated 
into the resulting translucent solution, and the combination was stirred 
at 70 ◦C for a further 60 min to get a mixture designated as (MS). The 
resultant solution was thereafter transferred into an autoclave reactor 
lined with Teflon at 180 ◦C for a duration of 5 h. The resultant product 
was subjected to two washes with ethanol/H2O and subsequently 
dehydrated under vacuum at 50 ◦C for 12 h, yielding NCQDs in the form 
of a fine powder. In the second step, which that simultaneously with step 
one, sol-gel nanoparticles of BaFe2O4 were produced. In this process, 
8.08 g (0.02 mol) of Fe(NO3)3.9H2O and 3.3334 g (0.01 mol) of Ba 
(NO3)2.4H2O were liquified in 50 mL of a 1 M urea solution (prepared 
with distilled water) under magnetic stirring at 70 ◦C. Subsequently, 
10.5072 g (0.046 mol) of C6H8O7.H2O was then added to the mixture, 
maintaining a 1:1 M ratio of metal ions to C6H8O7.H2O to facilitate the 
formation of nanospheres (referred to as BaFe2-UC). After 60 min of 
stirring at 70 ◦C, the mixture had formed a gel, which needed another 4 
h of stirring to reach the required viscosity. The organic residues were 
removed from the gel by calcining it at 850 ◦C for 8 h, resulting in 
BaFe2O4 (BFO) nanoparticles. In the third and final step, the BFO@NCQDs 
nanocomposite was prepared by mixing 100 mg of BaFe2O4 (BFO) and 
100 mg of NCQDs in 200 mL of deionized water, stirring for 30 min, and 
thereafter subjecting it to ultrasonic treatment for 15 min. The resultant 
mixture was placed in an autoclave lined with Teflon, sealed, and sub
jected to heating at 180 ◦C for 8 h. The final product, BFO@NCQDs 
nanocomposite, underwent extensive washing with nano pure water, 
acetone, hot water, and ethanol. After that, it was dried for 24 h at 60 ◦C.

2.3. The electrochemical (EC) experiments

The EC characteristics of the BFO@NCQDs electrode were measured 
utilizing a 3-electrode system with a CHI 608e electrochemical work
station, as previously cited in literature [10,37,38]. We conducted 
electrochemical investigations utilizing electrochemical impedance 
spectroscopy (EIS), Cyclic voltammetry (CV), and Galvanic charge/ 
discharge (GCD). The specific capacitance (Cs) values of the 
BFO@NCQDs electrode were calculated at various scan rate (SR) and 
current density (Id) using eqs. (1 and 2) [5]. 

Cs =

∫
I(V)dV

m × ΔV × v
F
/

g (1) 

Cs =
I × Δt

m × ΔV
F
/

g (2) 

3. Results and discussions

3.1. XPS analysis

The structure of BFO@NCQDs was further clarified through XPS 
analysis. Fig. 3.1(a) illustrates the survey spectrum of the 
BaFe2O4@NCQDs magnetic nanocomposite, showing characteristic 
peaks for Ba, C, N, O, and Fe elements within the (0–900 eV) range. 
These peaks confirm the high phase purity of the BFO@NCQDs com
posite, with the peak attributed to adventitious carbon from the XPS 
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spectrum, further confirming the composite’s purity [39]. The Ba 3d 
spectra shown in Fig. 3.1(b) have binding energies of 780.8 eV for Ba 
3d5/2 and 796.1 eV for Ba 3d3/2, according to references [39, 40]. The Fe 
2p spectra is displayed in Fig. 3.1(c), Fe 2p3/2 and Fe 2p1/2 peaks at 
710.9 eV and 724 eV, respectively, closely aligning with existing liter
ature [39–41]. There were three satellite peaks at: 719.26, 731.57, and 
734.53 eV. These findings point to the presence of Fe3+ cations in the 
materials that were produced. Three peaks are discernible in the high- 
resolution (HR) O 1 s spectra shown in Fig. 3.1(d): the lattice oxygen 
(C–O) in the BFO@NCQDs magnetic nanocomposite at 532.72 eV, the 
surface -O-H of water molecules at 531.28 eV, and a Ba/Fe-O bond at 
530.28 eV [5,40,41]. Graphitic, pyrrolic, and Pyridinic-N are repre
sented by the three deconvoluted peaks in the N 1 s spectra in Fig. 3.1(e) 
at 400.27, 399.6, and 398.80 eV, respectively [5,10,42]. The combina
tion of different nitrogen configurations can lead to synergistic effects 
that further enhance electrochemical performance. Nitrogen-doped 
carbon materials exhibit high specific capacitance and excellent 
cycling stability, attributed to the presence of various nitrogen func
tionalities that provide active sites and improve conductivity [38,43]. 
There are four deconvoluted peaks at 284.67, 286.04, 287.13, and 
288.11 eV in the HR-XPS spectra of C 1 s shown in Fig. 3.1(f). These 
peaks are attributed to C-C/C=C, C––N, C–N, and C––O, respectively 
[5,40,41,44]. According to the XPS results, the BFO@NCQDs magnetic 

nanocomposite does indeed contain N-doped graphite carbon [40].

3.2. XRD analysis

The phase purity of the BFO@NCQDs magnetic nanocomposite was 
evaluated by powder X-ray diffraction (PXRD), as illustrated in Fig. 3.2. 
According to the referencing JCPDS 00–025-1191, the XRD results 
validate the crystalline structure of BFO@NCQDs with a cubic spinel 
structure of barium monoferrite BaFe2O4. The peaks observed at (210), 
(111), (402), (212), (610), (020), (004), (802), (422), (214), (614), 
(822), and (630) with corresponding 2θ positions of 18.8◦, 20.0◦, 28.1◦, 
28.4◦, 32.7◦, 33.2◦, 42.6◦, 43.5◦, 44.1◦, 54.8◦, 56.5◦, 58.0◦, and 59.0◦, 
respectively [45]. The XRD analysis also reveals the presence of NC in 
the BFO@NCQDs, through the appearance of the peaks at (002), (100), 
and (004) corresponding to 2θ of 25.17◦, 43.73◦, and 55.18◦, respec
tively [10,41,46], suggesting that the synthesized graphene is not in a 
pure monolayer form. These findings are further supported by electron 
microscopy studies, which align with the XRD results.

3.3. FTIR spectra analysis

The BFO@NCQDs’ FTIR spectra in the 400–4000 cm− 1 region are 
shown in Fig. 3.3. O-H/N-H, C–H, C–C, C––O, C––N, and C–N 

Scheme 1. The method for preparing nitrogen-doped carbon quantum dots combined with magnetic nanocomposite barium ferrite (BFO@NCQDs)
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functional groups are responsible for the strong stretching vibration 
bands found in the spectra at 3475–3214, 2830, 1638, 1600, 1404, and 
1241 cm− 1, correspondingly [41,47,48]. The aromatic C–N heterocy
clic modes, which exhibit the stretch and rotate vibrations of C––N and 
C–N bonds, are represented by vibrational bands between 1241 and 
1638 cm− 1 [49,50]. The graphite carbon’s nitrogen sources are broken 
down by organic substances such as sucrose, urea, melamine, and citric 
acid [41,47]. The band at 1338 cm− 1 is accredited to N–H bending, 
whereas the vibrational stretch of aromatic C–O and C–N, coupled 
with C–H bending, corroborates the existence of nitrogen in the com
posites in pyrrolic and pyridine forms, further validated by XPS analysis 
[5,41,51]. The bands at 1141 and 1037 cm− 1 signify C–O stretching 

from epoxy and alkoxide groups, respectively [52,53]. Bands at 661 and 
775 cm− 1 are accredited to Ba–O stretching in tetrahedral sites [54]. A 
strong absorption band at 595 cm− 1 represents Fe–O stretching, char
acteristic of BaFe2O4 nanocrystals. The peaks at 595, 661, and 775 cm− 1 

designate vibrations due to metal ions Fe3+, Ba2+/O2− in octahedral and 
tetrahedral configurations, with high-frequency bands corresponding to 
metal oxide bonds at tetrahedral sites and low-frequency bands at 
octahedral sites, characteristic of spinel ferrites [45,55].

3.4. N2 adsorption-desorption isotherm(BET) analysis

The porous structure of the BFO@NCQDs magnetic nanocomposite 
was confirmed using the N2 adsorption-desorption isotherm, as illus
trated in Fig. 3.4. A type IV isotherm was observed for the BFO@NCQDs, 

Fig. 3.1. (a) XPS survy spectra of BFO@NCQDs, HR-XPS for (b) Ba 3d, (c) Fe2p, (d) O1s, (e) N1s, and (f) C1s.

Fig. 3.2. Powder X-ray diffraction (PXRD) analysis of BFO@NCQDs magnetic 
nanocomposite.

Fig. 3.3. Fourier transform infrared spectrometer (FTIR) of BFO@NCQDs 
magnetic nanocomposite.
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signifying a mesoporous structure with a surface area (SABET) of 821.65 
m2/g. As seen in the inset of Fig. 3.4, the BJH model measures the pore 
size distribution, which averages 1.29 nm. The mesoporous structure 
allows for efficient transport of electrolyte ions, and a high SABET in
dicates a large surface area of active sites [56,57].

3.5. Raman spectroscopy analysis

The structure of the BFO@NCQDs magnetic nanocomposite and the 
production of graphitic carbon were studied using Raman spectroscopy. 
The graphitic (G) band and the defect (D) band are distinguished by two 
conspicuous peaks in Fig. 3.5 at 1580.43 and 1344.87 cm− 1, respec
tively. The doubly degenerate E2g phonon is the source of the G-band, 
whereas the E2g mode of sp2-ring graphitic carbon is linked to the D- 
band [58,59]. The ID/IG ratio of 1.07 signifies a high-quality grade of 
graphite characterized by intrinsic voids and pores within the carbon 
framework, which augment the surface area and active sites. Further
more, the BFO@NCQDs magnetic nanocomposite displayed supple
mentary low-intensity peaks at 695, 504.9, 317.6, and 211.27 cm− 1. 
These peaks correspond to the symmetric and asymmetric stretching of 
oxygen atoms bonded to metals (Ba and Fe) in tetrahedral and octahe
dral coordination. They confirm the typical normal spinel structure of 
BaFe2O4 in the BFO@NCQDs magnetic nanocomposite [41,53].

3.6. Vibrating-sample magnetometry (VSM) analysis

The ability to combine high electrical capacitance with advanced 
ferrimagnetic or ferromagnetic properties in a single material at room 
temperature opens an avenue for the development of advanced 
magnetically ordered capacitive materials. Recent studies highlight the 
excellent capacitive performance of ferrite-based compounds, which 
combine room-temperature ferromagnetism and giant negative 
magnetoresistance. The coupling of high capacitance and magnetization 
in magnetically ordered capacitive materials provides a platform for 
strong magnetoelectric interactions. Magnetocapacitance studies show a 
significant increase in the capacitance of magnetically ordered capaci
tive materials under the influence of a magnetic field. The field also 
enhances energy and power density, reduces resistance, and improves 
cycling stability [60]. Ferromagnetic materials are materials that are 
strongly attracted to an external magnetic field. This type of material has 
more unpaired electrons in its metal atoms or metal ions. Thus, any 
excitation of the ferromagnetic material causes a transfer of individual 
electrons. This transfer increases the electrical conductivity (electro
chemical), greatly benefiting supercapacitors and energy storage de
vices [61]. Recently, magnetic field-induced electrochemical energy 
storage performance has opened up new possibilities for supercapacitor 
research. The noncontact energy provided by the magnetic field can 
affect the electrochemical performance of a supercapacitor by inducing 
changes in the electrode and electrolyte at the molecular level. The 
magnetic field can rearrange the electronic and ionic distribution and 
accelerate ionic transport at the electrode/electrolyte interface. The 
magnetic field can also induce structural and morphological changes 
during electrode fabrication, which has a significant impact on their 
electrochemical activity [62]. Fig. 3.6 illustrates the magnetic charac
teristics of the BFO@NCQDs, analyzed via vibrating-sample magne
tometry (VSM) with an applied field of ±20 kOe at 25 ◦C. The results 
revealed that the coercivity (Hc), saturation magnetization (Ms), rema
nent magnetization (Mr), and the Mr/Ms ratio were 809.39 Oe, 50.59 
emu/g, 26.31 emu/g, and 0.520, respectively [63,64].

3.7. TGA-DTA analysis

To assess the thermal characteristics of the BFO@NCQDs precursor 
and optimize its calcination conditions, TGA-DTA analysis was per
formed up to 900 ◦C, as displayed in Fig. 3.7. The evaporation of 
adsorbed moisture was responsible for an initial weight loss of 13.45 % 

Fig. 3.4. N₂ adsorption-desorption isotherm (BET) of BFO@NCQDs magnetic 
nanocomposite.

Fig. 3.5. Raman spectrum of BFO@NCQDs magnetic nanocomposite.

Fig. 3.6. Vibrating-sample magnetometry (VSM) curve of BFO@NCQDs mag
netic nanocomposite that displays saturation magnetization and remanent 
magnetization values.
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in the range of 25–150 ◦C. In the second phase, occurring between 150 
and 500 ◦C, and in the third phase, occurring between 500 and 700 ◦C, 
additional weight losses of 8.56 % and 22.27 %, respectively, were noted 
as a result of the thermal degradation of organic compounds [5,41,65]. 
The DTA curve of BaFe2O4 is an essential instrument for assessing the 
thermal properties of this material and comprehending its synthesis and 
phase change mechanisms. The DTA curve of BaFe2O4 will exhibit 
exothermic peaks indicative of different thermal phenomena, including 
phase changes and crystallization. The peaks can be utilized to ascertain 
the synthesis temperature and the precise temperature intervals at 
which certain phases develop. Exothermic peaks, with the first peak at 
196 ◦C as a phase transition [65], and the second peak at around 860 ◦C, 
are frequently linked to the crystallization of barium monoferrite during 
pyrosynthesis, resulting in the creation of BaFe2O4 from its precursor 

components [66].

3.8. TEM analysis

The geometric structure of the pristine NCQDs and BFO@NCQDs was 
analyzed using TEM imaging. Fig. 3.8 illustrates the unique character
istics of the original components and provides details about the overall 
architecture of the heterostructure. Fig. 3.8(a) presents the TEM image 
of pristine NCQDs, revealing a distribution of spherical shape with a size 
ranging from 0.5 to 5 nm. This observation indicates that the hydro
thermal treatment effectively fragmented nanometer-sized graphene 
sheets into smaller quantum dots. The size and crystal structure of the 
produced NCQDs were further validated through HR-TEM imaging. 
From Fig. 3.8(b), the lattice spacing of the NCQDs is found to be 0.343 
nm, which matches the (002) plane of graphitized carbon. For the 
BFO@NCQDs heterostructure, the TEM image Fig. 3.8(c) reveals a ho
mogeneous distribution of spherical NCQDs interspersed with clusters of 
BFO nanoparticles within a layered carbon matrix. This integration 
significantly reduces the crystallinity of the NCQDs by increasing the 
quantity of binding and conducting agents. This phenomenon is attrib
uted to electrostatic interactions, dipole-dipole interactions, and 
hydrogen bonding involving surface functional groups during the hy
drothermal treatment. These interactions facilitate the creation of gra
phene carbon QDs and their subsequent interaction with Ba (II) and Fe 
(III) cations, as well as urea [67]. This mechanism influences crystal 
growth, thus altering the morphology of the final material. HR-TEM 
analysis (Fig. 3.8d and e) confirms that the BFO nanoparticles effec
tively encapsulate the NCQDs, creating close interfacial contact between 
the phases in the heterostructure. The lattice spacing of 0.343 nm in the 
NCQDs matches the (002) plane of graphene carbon, whereas the lattice 
spacings of 0.327 nm and 0.273 nm, associated with BaFe2O4, align with 
the (212) and (610) planes of BaFe2O4, respectively. Results from XRD 
corroborate these findings, which point to robust chemical associations 

Fig. 3.7. TGA/DTA analysis that displays the thermal characteristics of 
BFO@NCQDs magnetic nanocomposite.

Fig. 3.8. Morphological analysis of synthesized sample (a) TEM images and size distributions, (b) HR-TEM images of pure NCQDs, (c) TEM images, (d,e) HR-TEM 
images, and (f) SAED of BFO@NCQDs magnetic nanocomposite.
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between BFO nanoparticles and oxygen-containing functional groups on 
NCQDs, as well as van der Waals interactions between BFO and NCQDs 
[5,35,45,64,67]. The selected area electron diffraction (SAED) of 
BFO@NCQDs is displayed in Fig. 3.8(f). The shown patterns exhibit 
seven intense rings, corresponding to the (210), (111), (402), (212), 
(610), (020), and (422) planes of BaFe₂O₄. An additional ring indexed to 
the (002) plane further confirms the presence of graphitic carbon. 
Together, these results provide clear evidence of the structural and 
chemical integration within the BFO@NCQDs magnetic nanocomposite.

To confirm the high crystallinity of the prepared BFO@NCQDs 
magnetic nanocomposite and the homogeneous distribution of spherical 
NCQDs on the BFO nanosheets, elemental mapping analysis was per
formed, as shown in Fig. 3.9. The extremely demonstrate distribution of 
the elements (Ba, O, N, Fe, and C) within the nanosheets is clearly shown 
by the elemental mapping images of the BFO@NCQDs. This signifies the 
similar distribution of NCQDs on the surface of the BFO nanosheets 
within the BFO@NCQDs magnetic nanocomposites.

4. Electrochemical performance studies of the BFO@NCQDs 
electrode

4.1. Cyclic voltammetry analysis (CV)

The electrochemical efficacy of the BFO@NCQDs magnetic hetero
structure as an excellent electrode for SCs was assessed at ambient 
temperature. CV measurements were conducted at various scan rates 
(SR) ranging from 5 to 50 mV/s using a 5 M KOH solution as the elec
trolyte, within a potential between (− 0.3 to +0.4 V), as illustrated in 
Fig. 4.1(a). The maximum Cs of the BFO@NCQDs electrode was calcu
lated to be around 1513.94 F/g at a scan rate (SR) of 5 mV/s, as illus
trated in Fig. 4.1(b) using Eq. (1). The electrochemical reaction seen in 
the CV analysis, as illustrated by Eqs. (3–9), lends credence to the EDLC 
behavior. This efficiency is due to the fact that the physical and porosity 
properties of the material facilitate contact between the electrode sur
face and the electrolyte ions. 

BaO+Fe2O3 ↔ BaFe2O4 (3) 

Fe3+ +3OH− →Fe (OH)3 (4) 

3Fe (OH)3 +3e− →2FeO2
− +4H2O+OH− + Fe(0) (5) 

2Fe(0) +6OH− ↔ Fe2O3 +3H2O+6e− (6) 

Ba2+ +2OH− →Ba(OH)2 (7) 

2 Ba(OH)2 +2e− →BaO+H2O+2OH− +Ba(0) (8) 

Ba(0) +2OH− ↔ BaO+H2O+2e− (9) 

4.2. Galvanic charge/discharge analysis (GCD)

In the same vein, GCD experiments were carried out with a voltage 
ranging between 0.0 and 1.4 V and varying current density (Id) values 
from 2 to 12 A/g, as displayed in Fig. 4.2(a). By utilizing the GCD rates of 
the BFO@NCQDs magnetic nanocomposites at various discharge cur
rents (Id) [5], the Cs of the electrode in a three-electrode system was 
determined using Eq. (2). At Id of 2, 4, 6, 8, 10, and 12 A/g, the specific 
capacitance values that resulted were 1984.98, 1614.65, 1413.96, 
1252.8, 1126.38, and 938.4 F/g, respectively, as shown in Fig. 4.2(b).

4.3. The symmetric cell of the BFO@NCQDs electrode analysis

A Ragone plot illustrating the BFO@NCQDs magnetic nano
composite’s overall performance is shown in Fig. 4.3. Eqs. (10− 12) were 
used in a two-electrode system to determine the specific capacitance Ct 
(F/g), energy density (Et) (Wh/kg), and power density(Pt) (W/kg) of the 
symmetric electrode. 

Ct =
4I × Δt
m × ΔV

F
/

g (10) 

Fig. 3.9. Elemental mapping images of the BFO@NCQDs nanosheet, which illustrate the distribution of the elements in the sample.
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Et =
1

8 × 3.6
CtΔV2 Wh

/

kg (11) 

Pt =
Et

Δt
×3600 W

/

kg (12) 

The symmetric cell achieved (Et) values of approximately 42.805, 
31.326, 26.189, 22.065, 18.829, and 17.018 Wh/kg at corresponding 
(Pt) values of 2090.39, 2848.09, 3532.13, 4584.85, 5812.29, and 
7565.43 W/kg. As seen in the inset of Fig. 4.3, the values of Et decreased 
from 42.805 to 17.018 Wh/kg, Pt increased from 2090.39 to 7565.43 W/ 
kg. This demonstrates that the BFO@NCQDs magnetic nanocomposite 
offers exceptional energy and power densities, critical for both envi
ronmental sustainability and commercial applications [68]. The sym
metric electrode material of BFO@NCQDs exhibits improved 
performance for several reasons. Adding N-doped carbon QDs lowers the 
charge transfer resistance and increases the specific capacitance and 
electronic conductivity. Additionally, these quantum dots enhance 

interaction by making carbon compounds more wettable in the elec
trolyte. The BFO@NCQDs electrode has a lower internal resistance, 
which allows the active material and electrolyte to transfer charges more 
quickly. Furthermore, when a highly ion-conductive water electrolyte is 
present, the electrode’s electric double-layer capacitance (EDLC) char
acteristics enable efficient charge transfer. Rapid and transitory faradic 
reactions are enabled by the high electroactive surface area (SA) of the 
BFO@NCQDs, which provides a short transportation route for electro
lytes. Consequently, these nanomaterials demonstrate excellent poten
tial for advanced energy storage applications [69–72].

4.4. The electrochemical impedance spectroscopy (EIS) analysis

Fig. 4.4 presents the EIS results of the BFO@NCQDs magnetic 
nanocomposites, depicted as a Nyquist plot. There is a semicircular area 
and a linear section on the plot. The electrolyte-electrode interface 
charge transfer resistance (Rct) is represented by the semicircular region, 

Fig. 4.1. Electrochemical analyses of BFO@NCQDs electrode (a) cyclic voltammetry (CV) at various scan rates ranging from 5 to 50 mV/s within a potential range 
between (− 0.3 to +0.4 V), (b) specific capacitance (Cs) by CV.

Fig. 4.2. Electrochemical analyses of BFO@NCQDs electrode (a) Galvanic charge/discharge (GCD) at current density values from 2 to 12 A/g, and (b) specific 
capacitance (Cs) by GCD.

B.M. Al-Maswari et al.                                                                                                                                                                                                                        Inorganic Chemistry Communications 183 (2026) 115790 

8 



and the ion diffusion within the electrode is reflected by the Warburg 
impedance (Zw), which is represented by the linear section. The semi
circle’s diameter is used to calculate the interfacial resistance (Rct), and 
the real axis intercept is used to estimate the internal resistance (Rs), 

which includes contact and electrolyte resistance [5,10]. Fig. 4.4 illus
trates the equivalent circuit model for the EIS spectrum, which includes 
elements like Zw, Rs, Rct, and electric double-layer capacitance (Cdl). 
Approximately 17, 3, and 22Ω were the observed values for Rs, Rct, and 
Zw in the BFO@NCQDs magnetic nanocomposites, which indicates great 
conductivity and stability [73–75]. Table 1 summarizes past research 
that compares the current work to that of other researchers and shows 
that the nitrogen-doped carbon QDs synthetic nanocomposite has better 
electrochemical performance as energy storage and supercapacitor 
electrodes.

4.5. Cyclic stability of BFO@NCQDs electrode analysis

At a discharge current of 12 A/g, the cyclic stability of the 
BFO@NCQDs electrode was evaluated using the GCD performance, as 
shown in Fig. 4.5. Because electrode materials are activated during 
cycling, the value of Cs gradually decreases [67,76,77]. As seen in the 
inset, which shows the electrode’s performance after 10,000 cycles, it 
maintains 91.1 % of its initial Cs. This is illustrated by the last ten GCD 
cycles. The remarkable cyclic stability of BFO@NCQDs magnetic 
nanocomposites is attributed to their strong structure and morphology 
[77]. The electrode’s Coulombic efficiency, which was already 
outstanding before 10,000 cycles at 12 A/g, stays at an even more 
astounding 99.9 %. The created BFO@NCQDs electrode’s outstanding 
electrochemical performance is mainly attributable to the NCQDs, 
which have a high porosity and a large SA, as revealed in Fig. 3.4. These 

Fig. 4.3. Ragon plot of BFO@NCQDs magnetic nanocomposites, with an inset 
illustrating the changes in energy and power densities.

Fig. 4.4. The electrochemical impedance spectroscopy (EIS) curve of the 
BFO@NCQDs electrode, which contains the equivalent circuit model of the 
EIS spectrum.

Table 1 
Comparison of the present work with previously reported NCQDs as electrodes for supercapacitors and energy storage.

Material Electrode Electrolyte Id (A/g) Et (Wh/Kg) Pt (W/Kg) Cs (F/g) References

BaFe2O4@Cu2O K4[Fe (CN)6] 1 27 45 803 [78]
BaFe2O4 K4[Fe (CN)6] 1 – – 593 [78]
Ni(OH)2/NCDs – 1 34.6 7000 1711.2 [79]
GQD/MnO2 0.5 M Na2SO4 5 mV/s 0.154 μWh cm− 2 7.51 μW cm− 2 1170 [80]
Fe2O3QDs/FGS composites 1 M Na2SO4 0.1 50.7 100 347 [81]
NiCo2O4@ GQDs composite 6 M KOH 30 38 800 1242 [82]
CuCo2O4/ CQDs PVA/KOH 1 39.5 1203.7 779.8 [83]
Fe2O3@CQDs PVA/KOH 1 – – 298.7 [83]
NiCo2O4 /C-QDs – 1 27.8 10,240 856 [84]
(N-CQDs)/Co3O4 nanocomposite 6 M KOH 5 mV/s 36.9 480 1867 [85]
N-GQDs/Carbon 

Fiber /Graphene Hydrogel
– 20 mA/cm3 20.5 200 93.7 F/cm3 [86]

NCH/NCQDs 3 M KOH 1 49.1 – 727 [87]
BFO@NCQDs 

Magnetic Nanocomposite
5 M KOH 2 42.805 7565.43 1984.98 This work

Fig. 4.5. Specific capacitance (Cs) and Coulombic efficiency against cycle 
number by the BFO@NCQDs electrode in the inset presents the last 10 
GCD curves.
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properties prove that it is an ideal electrode for use in high-performance 
SCs, which store energy.

5. Scalability and cost considerations

The scalability and economic feasibility of electrode materials are 
critical for their practical use in energy storage devices. The 
BFO@NCQDs magnetic nanocomposite demonstrates clear advantages 
in this regard. Both barium ferrite and carbon quantum dots can be 
synthesized from abundant, inexpensive precursors, providing a sus
tainable alternative to expensive noble-metal-based systems. The hy
drothermal method used for synthesis is simple, energy-efficient, and 
environmentally friendly, enabling large-scale production without the 
need for sophisticated equipment. Nitrogen doping, utilizing low-cost 
precursors such as urea or ammonia, further enhances electrochemical 
performance while maintaining minimal costs [38]. Recent studies also 
highlight that CQDs can be produced via green, low-cost, and scalable 
approaches, including electrochemical or biomass-derived carboniza
tion [88,89]. Likewise, innovations in ferrite processing, such as two- 
step sintering, have significantly reduced energy consumption, rein
forcing the scalability of ferrite-based nanomaterials [90]. Taken 
together, these factors position BFO@NCQDs as a cost-effective, scal
able, and environmentally sustainable electrode material with strong 
potential for commercial supercapacitor applications.

6. Conclusion

A simple hydrothermal technique was employed to fabricate homo
geneous magnetic nanocomposites containing nitrogen-doped carbon 
quantum dots (BFO@NCQDs). BET analysis revealed that BFO@NCQDs 
possess an excellent specific surface area of 821.65 m2/g. Analysis of 
BFO@NCQDs’ crystal structure, elemental content, and morphology 
was carried out with the use of XRD, XPS, FTIR, FE-SEM, and HR-TEM. 
The produced BFO@NCQDs magnetic nanocomposites exhibited mag
netic characteristics, with a Ms of approximately 50.59 emu/g. NCQDs 
were found to significantly influence BFO’s size, crystallinity, and 
thickness, acting as effective structure-directing agents. When employed 
as electrode materials for supercapacitors, BFO@NCQDs demonstrated 
an enhanced specific capacitance Cs of ~1513.94 F/g at 5 mV/s, as 
determined by CV in a 5 M KOH electrolyte. GCD studies further 
confirmed improved capacitive performance, yielding a Cs of 1984.98 
F/g at an Id of 2 A/g. The improved performance of the capacitor is 
attributed to the distinctive characteristics and diminutive size of 
NCQDs. In particular, the BFO@NCQDs-based symmetric cell exhibits a 
high power density (Pt) of 2090.39 W/kg and an energy density (Et) of 
about 42.805 Wh/kg. However, when the Pt was 7565.43 W/kg, the Et 
dropped to 17.018 Wh/kg, and the cycling stability was outstanding, 
with 91.1 % retention after 10,000 cycles at 12 A/g. These results 
highlight BFO@NCQDs magnetic nanocomposites as a cost-effective, 
eco-friendly, and readily manufacturable electrode material with supe
rior conductivity. This material is a viable contender for electrochemical 
supercapacitors in energy storage applications and can also serve as a 
reliable backup power supply for portable electronic devices.
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