
Academic Editor: Fucheng Lin

Received: 15 September 2025

Revised: 15 October 2025

Accepted: 21 October 2025

Published: 2 November 2025

Citation: Shetty, U.; Sowmya, M.S.;

Lohithaswa, H.C.; Mallikarjuna, M.G.;

Jadesha, G.; Nayaka, S.C. Genome-

Wide Association Study Reveals Novel

QTNs and Candidate Genes Implicated

in Resistance to Northern Corn Leaf

Blight in Maize (Zea mays L.). Int. J.

Mol. Sci. 2025, 26, 10677. https://

doi.org/10.3390/ijms262110677

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Genome-Wide Association Study Reveals Novel QTNs and
Candidate Genes Implicated in Resistance to Northern Corn Leaf
Blight in Maize (Zea mays L.)
Udaya Shetty 1, Muntagodu Shreekanth Sowmya 2 , Hirenallur Chandappa Lohithaswa 2,* ,
Mallana Goudra Mallikarjuna 3 , Ganiga Jadesha 4 and Siddaiah Chandra Nayaka 1,*

1 Molecular Plant Pathology Laboratory, Department of Studies in Biotechnology, University of Mysore,
Mysore 570006, Karnataka, India

2 Department of Genetics and Plant Breeding, College of Agriculture, GKVK, University of Agricultural
Sciences, Bangalore 560065, Karnataka, India

3 Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
4 Department of Plant Pathology, College of Agriculture, GKVK, University of Agricultural Sciences,

Bangalore 560065, Karnataka, India
* Correspondence: lohithaswa.chandappa@gmail.com (H.C.L.); moonnayak@gmail.com (S.C.N.)

Abstract

Northern corn leaf blight is a major fungal disease hindering maize production worldwide.
Among the various strategies of disease management, the deployment of host plant resis-
tance is the most economic means to mitigate the yield losses, as it is cost-effective and
durable. In this study, we performed the genome-wide association study (GWAS) analysis
in a set of 336 maize inbred lines. The experimental material was evaluated for northern
corn leaf blight disease response across two seasons during the rainy seasons of 2023 and
2024. The ANOVA results and estimates of genetic variability parameters indicated the
existence of a substantial amount of genetic variability. High heritability and high genetic
advance as percent mean suggested the presence of additive genetic effects in controlling
the disease response. GWAS analysis was performed employing GLM, MLM, CMLM,
MLMM, FarmCPU and BLINK. The results from GWAS identified 74 marker associations
from GLM and FarmCPU models. The QTN S1_7356398, located on chromosome 1, identi-
fied from the GLM model, explained 12.12 percent of phenotypic variation. Another QTN
S2_51098833 located on chromosome 2, identified from the FarmCPU model, explained
6.14 percent variation. Remaining associations explained lesser PVE, suggesting the quan-
titative inheritance of NCLB resistance. Candidate gene identification was performed by
keeping B73 as a reference genome. The identified QTNs from the current study were
found to be located in annotated genes with functional domains implicated in defence
mechanisms in maize and other crops. Many candidate genes, including chitinase, putative
serine/threonine protein kinase, and aldehyde oxygenase, were identified and found to
play a crucial role in plant defence mechanisms against several biotic and abiotic stresses.

Keywords: maize; northern corn leaf blight (NCLB); resistance; GWAS; QTNs; candidate
genes

1. Introduction
Northern corn leaf blight is a major foliar disease of maize, affecting maize cultivation

and production in nearly all temperate and tropical maize-growing regions worldwide.
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It is caused by a hemibiotrophic pathogen, Setosphaeria turcica with anamorphic stage
Exserohilum turcicum [Pass] Leonard and Suggs. It has a widespread existence throughout
the globe and is commonly seen in Asia, America, Europe, and Africa. High humidity, low
temperature, and cloudy weather are highly conducive for the disease development [1].
Based on the extent of disease severity, the yield loss can vary between 50% and 70% when
infection occurs before silking and it affects the leaf area before seed set [2]. However, in
India, yield loss can vary between 25 and 90%, depending on the disease severity. The
premature death of the blighted leaves significantly reduces the active leaf area available
for photosynthesis, causing severe yield losses.

Various races of Exserohilum turcicum exist in nature; the commonly occurring ones
are 0, 1, 2, 3, 12, 23, 23 N, and 123 N, based on their virulence against host resistance genes
viz., Ht1, Ht2, Ht3, Ht4, HtM, HtP, Htn1, HtNB, and rt in maize [3]. These Ht genes in
maize confer qualitative resistance, and are race-specific, single-gene-inherited, and mostly
dominant. However, the expression of these resistance genes in the host plant, or the
avirulence genes in the pathogen, is greatly altered by environmental conditions, such as
temperature, humidity, and light intensity, creating an unstable and less durable resistance.
Many of the above-mentioned resistance genes in maize have been fine-mapped and cloned
and are extensively employed in disease resistance breeding [4].

Although several qualitative Ht resistance genes have been cloned and pyramided in
the breeding programmes, their race-specific nature and environmental instability limit
their long-term effectiveness [4]. In the temperate environments where pathogen variability
is comparatively low, pyramiding several Ht genes is considered to be an effective strategy
in breeding NCLB resistance. In contrast, high pathogen abundance and variability in the
tropical regions demand highly durable quantitative resistance (QTLs) to tackle the NCLB
disease [5]. Small and additive effects of individual contributing alleles in a quantitative
locus cannot be overcome easily by the evolution of pathogen races, and hence, it is
more practically useful to the breeders. Several researchers reported the predominance of
additive gene action controlling the resistance [6,7].

QTL or linkage mapping is an effective approach when studying the complex and
polygenically inherited traits [4,8]. A number of mapping studies have been conducted to
identify the genomic regions conferring NCLB resistance in various genetic backgrounds
in different environments [6,7,9,10] Though it is a very powerful strategy, it has several
limitations, such as a limited number of recombination, less allelic diversity (only two
alleles per locus can be harnessed), and poor mapping resolution, as no strong inferences
about linkage relationships among the identified QTLs can be made [11]. In most of the
QTL mapping studies, the mapping populations and breeding populations are unrelated,
and, hence, the translation of the QTLs identified to breeding targets has been very limited.

Genome-wide association studies (GWAS) offer a high-resolution alternative to QTL
mapping by leveraging natural allelic diversity in diverse populations [12]. It involves
the correlation of allelic frequencies at each of the several hundred thousand markers
distributed throughout the genome with trait variations in a population-based sample,
and such studies are based on the accurate phenotypic analysis of a given target trait in a
large set of widely unrelated individuals. GWAS has made significant progress in the past
decade and is widely employed to identify the allelic variants linked to various biotic and
abiotic stresses in maize [13]. Several researchers employed GWAS to identify the genetic
variants associated with NCLB resistance, [4,14–17] revealing the quantitative inheritance
of NCLB resistance.

GWAS enables the detection of the genomic region associated with the trait of interest;
however, pinpointing the causal candidate genes is necessary to translate these associa-
tions into functional insights. It is also essential to elucidate the genetic and molecular
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basis of host–pathogen interactions, thereby leading to a better understanding of resis-
tance mechanisms. Previous QTL mapping and GWAS studies conducted across all ten
chromosomes have identified several QTLs and associated candidate genes, including
LRR-RLKs, PR proteins, P450s, transcription factors, and AAA-ATPase enzymes [15,18].
Bulk segregant analysis (BSA) and SNP-based linkage or GWAS studies have identified
several QTLs associated with NCLB resistance in maize. Several candidate genes within
these QTL regions have been reported, many of which are involved in key defence mecha-
nisms, including ATP binding, kinase activity, and reactive oxygen species (ROS)-mediated
signalling pathways [19,20]. Recent studies combining QTL mapping and GWAS in multi-
parental populations have highlighted major genomic regions and candidate genes, such
as pentatricopeptide repeat (PPR) proteins, which show an elevated expression in resistant
lines under disease challenge, suggesting their potential role in conferring durable NCLB re-
sistance [17]. Together, these studies build a picture of the complex, quantitative resistance
of NCLB response in maize, mediated by many genes of moderate effect and involving
multiple biochemical defence pathways. Although GWAS provides powerful insights,
functional validation is essential to confirm the roles of identified loci in disease resistance.

We hypothesize that the natural variation among the maize inbreds contributes to
differential resistance to NCLB, and that GWAS can identify genomic regions and candidate
genes associated with it. In this light, the present study aims to perform GWAS analysis
to identify QTNs linked to NCLB resistance and to pinpoint the candidate genes, located
within the associated genomic regions, conferring NCLB tolerance, for future functional
validation and use in resistance breeding programmes.

2. Results
The significance of the mean sum of squares due to the genotypes indicated the pres-

ence of substantial genetic differences among the genotypes, leading to a varied phenotypic
response for NCLB disease (Table 1). After confirming the homogeneity of error variance
through Levene’s test, a pooled ANOVA was performed, and its results are presented in
Table 2. The high significance of the mean sum of squares, due to genotypes, years, and
genotype × year interaction suggested the existence of genetic variability, along with the
influence of environment on the disease expression. Furthermore, the genetic variability
parameters of phenotypic and genotypic coefficients of variation, genetic advance as per-
cent mean, and broad-sense heritability were estimated (Figure 1). The higher magnitude
of the phenotypic coefficient of variation (PCV), genotypic coefficient of variation (GCV),
heritability, and genetic advance as percent mean indicated the presence of additive gene
action in controlling the disease response. Of the 336 maize inbreds, 8 were resistant,
241 were moderately resistant, 79 were moderately susceptible, and 8 were susceptible
(Supplementary Table S1).

Table 1. Analysis of variance for northern corn leaf blight disease response of maize inbreds in
Hassan for two seasons.

Source of Variation Degrees of
Freedom

Mean Sum of Squares

Season 1 Season 2

Entry 335 2.06 *** 2.42 ***

Replication 1 1.74 1.90 *

Replication: Block 22 1.66 1.71

Residuals 313 0.24 0.77
***, and * indicate significance at 0.0001 and 0.05 percent probability, respectively.
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Table 2. Pooled ANOVA for NCLB disease response across seasons.

Source of Variation Degrees of Freedom Mean Sum of Squares

Genotype 335 117.70 ***

Year 1 7.70 *

Replication 1 6.46

Genotype: Year 335 48.59 **

Residuals 1339 1.40
***, ** and * indicate the significance at 0.0001, 0.001 and 0.05 percent probability, respectively.

Figure 1. Estimates of genetic variability parameters for northern corn leaf blight (NCLB) disease
response in 336 maize inbred lines evaluated across two growing seasons. Parameters include
genotypic coefficient of variation (GCV), phenotypic coefficient of variation (PCV), genetic advance as
percent of mean (GAM), and broad-sense heritability (H2). GCV and PCV were calculated following
standard quantitative genetic methods, while GAM represents the expected improvement in the trait
mean under selection (refer to material and methods).

2.1. Population Structure, Kinship, and LD Analysis

Principal component analysis (PCA) was performed using high-density SNP data
to explore the population structure of the experimental material. The first two principal
components explained only 7.60 and 2.75 percent of the total genetic variation (Figure 2),
indicating that the genetic diversity is distributed across many dimensions. Due to the low
proportions of variation captured, the PCA biplot did not provide a clear separation of
genotypes into distinct subpopulations. Thus, PCA was considered supplementary, and
population structure was primarily assessed using the kinship matrix.
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Figure 2. Three-dimensional PCA plot showing the population structure of the experimental material.
PC1, PC2, and PC3 explain 7.6%, 2.75%, and 2.3% of the total variation, respectively (Red colour
dots indicate the maize inbreds grouping into three different clusters). Clustering of points indicates
genetic differentiation among the individuals.

The genetic relatedness among the genotypes is presented as a kinship matrix heatmap
(Figure 3), which reveals the varying degree of relatedness among the inbred lines consid-
ered. While most of the genotype pairs displayed low to moderate kinship coefficients, a
few clusters exhibited higher relatedness, indicating the existence of a potential substructure
in the study panel.

Figure 3. VanRaden’s algorithm-based kinship plot representing the genetic relatedness among
336 maize inbreds (increasing color intensity from yellow to brick red indicates high relatedness).
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The genome-wide linkage disequilibrium (LD) decay analysis revealed that the linkage
disequilibrium (r2) decreased below the critical threshold of 0.2, at a distance of approxi-
mately 300 kb. This indicates that LD extends over a relatively longer distance, suggesting
moderate to low recombination in the population. The r2 did not drop below 0.1 within the
examined range, highlighting the persistence of LD even at a larger distance (Figure 4).

Figure 4. LD decay pattern across the genome at r2 threshold of 0.2.

2.2. GWAS Analysis and Candidate Gene Identification

GWAS analysis was performed for NCLB response of the experimental material
across two seasons, employing both general and mixed linear models using 289,701 high-
quality and dense SNP markers. The results from the pooled GWAS analysis indicated the
significant association of 70 and 4 QTNs in GLM and FarmCPU models, respectively. The
QTNs associated with NCLB resistance, their chromosome position, MAF, −log10 (p) value,
and PVE (%) are represented in Supplementary Table S2. The identified NCLB resistance-
linked QTNs were located on chromosomes 1, 2, 3, 4, 5, 6, 7, 8, and 9, with −log10P
values ranging between 6.76 and 10.36. Furthermore, the highest variation explained by
the linked QTN identified from GLM model was 12.12 percent by S1_7356398, located
on chromosome 1. Another significantly associated QTN, S2_51098833, identified from
the FarmCPU located on chromosome 2, explained 6.10 percent of the variation to NCLB
resistance. The Manhattan plots showing the association of significant QTNs across all the
chromosomes in both the GWAS models are given in Figure 5. The p-value of the associated
QTNs displayed significant deviation from the expected p-value in the QQ-plot (Figure 6).
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Figure 5. Manhattan plots for depicting marker-trait associations for northern corn leaf blight disease
resistance across different GWAS models ((a) GLM, (b) MLM, (c) CMLM, (d) MLMM, (e) FarmCPU,
and (f) BLINK). The QTNs located above the threshold −log10(p) are considered to be significantly
associated with NCLB resistance. Different colours indicate different maize chromosomes.

Furthermore, the candidate genes were identified utilizing the B73 version 5 maize refer-
ence genome (https://maizegdb.org/genome/assembly/Zm-B73-REFERENCE-NAM-5.0
(accessed on 25 August 2025)). The 20 Kb upstream and downstream regions, from the
physical position of the significant QTNs identified from the GWAS analysis, were scanned
for the presence of key candidate genes involved in plant defence mechanisms. The 20 Kb
downstream of the QTN S1_7356398 located on chromosome 1, explaining 12.12 percent
of the phenotypic variation identified from the GLM model, had two candidate genes, viz.,
Zm00001eb002620 (chitinase) and Zm00001eb002610 (putative serine/threonine protein kinase).
The gene chitinase is involved in the defence response to the fungal attack, and is also in-
volved in the polysaccharide catabolic process, cell wall macromolecule catabolic process,
chitinase activity, chitin catabolic process, and protein phosphorylation. Another candidate
gene, Zm00001eb002610 (putative serine/threonine protein kinase), was found to be associated
with the brassinosteroid-mediated signalling pathway, which plays a prime role in the plant’s
response to several biotic and abiotic stresses. It is also involved in protein kinase activity
and ATP binding. Another significantly associated QTN S1_290805849, located on chromo-
some 1, identified from the FarmCPU model, identified the candidate gene Zm00001eb059630
(aldehyde oxygenase) in the upstream region. It is involved in fatty acid biosynthesis and
metabolism, and iron ion binding. In the downstream of the identified QTN, we found another
annotated gene encoding Obg-like ATPase 1; this OBG-type G domain-containing protein is
involved in ATP hydrolysis, and ATP and GTP binding. The list of all the candidate genes
identified by keeping B73 as a reference genome is given in Table 3.

https://maizegdb.org/genome/assembly/Zm-B73-REFERENCE-NAM-5.0
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Figure 6. Quantile–quantile (QQ)-plots (graphical representations of the deviations of the observed
p-values from the normal distribution. The observed p-values from each of the SNP markers are
plotted against the expected values from a theoretical χ2-distribution to study the genomic inflation)
depicting the distribution of the observed versus expected p-values for marker–trait associations
for NCLB resistance under different GWAS models, including (a) GLM, (b) MLM, (c) MLMM,
(d) CMLM, (e) BLINK, and (f) FarmCPU, indicating the control of false positives across models. Blue
circles represent observed p-values, the red line indicates the expected distribution under the null
hypothesis, and the gray shaded area corresponds to the 95% confidence interval. Points above the
red line with significant deviation suggest potential significant marker-trait associations.

Table 3. List of putative candidate genes identified from the current study.

QTNs Chromosome Candidate Gene Gene Name Predicted Function Reference

S1_7356398
(downstream)

1 GRMZM2G099598 Chitinase

Defence response to fungus
Polysaccharide catabolic

process
Cell wall macromolecule

catabolic process
Chitinase activity

Chitin catabolic process

[21]

1 GRMZM2G099598
Putative

serine/threonine
protein kinase

Protein phosphorylation
Brassinosteroid mediated

signalling pathway
Protein kinase activity

ATP binding
Salt and drought tolerance

-
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Table 3. Cont.

QTNs Chromosome Candidate Gene Gene Name Predicted Function Reference

S1_290805849
(upstream) 1 GRMZM2G038964

Aldehyde
oxygenase

(deformylating)

Fatty acid biosynthetic
process

Iron ion binding
Fatty acid alpha-hydroxylase

activity
Aldehyde oxygenase

(deformylating) activity
Fatty acid metabolic process
Octadecanal decarbonylase

activity

-

S1_290805849
(downstream) 1 GRMZM2G038494

Obg-like ATPase
1; OBG-type G

domain-
containing

protein

ATP hydrolysis activity
Ribosomal large subunit

binding
ATP binding
GTP binding

-

3. Discussion
Breeding for biotic and abiotic stress tolerance is crucial in order to achieve climate

resilience in the era of a changing climate. Northern corn leaf blight is one of the major
diseases affecting maize-growing regions. Identifying sources of disease resistance and
markers associated with NCLB resistance is essential for enhancing maize productivity
in the current production scenario. Thus, the identification, validation, and deployment
of a high-value genomic region for the target trait will accelerate the development and
selection of improved maize varieties or hybrids. The genetic mapping and molecular
characterization of the genomic regions associated with the trait can be achieved through
targeted molecular breeding. The association mapping or the GWAS analysis exploits
historical recombination to elucidate the marker–trait associations.

The ANOVA results indicated substantial genetic variation in the NCLB disease
response across years, suggesting the potential for selecting resistant genotypes. The
majority of the experimental material displayed a moderately resistant response, whereas
only a few were completely resistant, highlighting the skew of the genotypes towards
susceptible reaction. Significant genotype × year interactions underscored the influence of
environmental factors on the disease response. The higher magnitude of genetic variability
parameters, viz., PCV, GCV, heritability, and genetic advance as percent mean indicated
the predominance of additive gene action in disease response, implying the effectiveness
of selection. Quantitative inheritance of NCLB resistance with additive gene action was
reported earlier by [6,7,22].

Furthermore, the population structure and relatedness among the inbreds were evalu-
ated using PCA and kinship analysis to ensure reliable association mapping. The relatively
low proportion of variation explained by each of the principal components indicated the
minimal confounding due to population structure, thereby reducing the likelihood of
spurious marker–trait associations [23]. To overcome this, advanced mixed models such as
MLM, CMLM, MLMM, FarmCPU, BLINK, and SUPER, which incorporate both population
structure and kinship information, provide more robust association detection [15]. In the
present study, the application of both general and mixed linear (single and multi-locus)
models ensured the effective control of type I errors and enhanced the detection power.
Moreover, the observed LD pattern suggested that the SNP density used was adequate for
achieving the resolution needed for the reliable QTN detection across the genome. Overall,
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the diversity, moderate relatedness, and appropriate marker density in the current study
validates its suitability for GWAS analysis in maize.

GWAS identified significant associations with NCLB resistance from GLM and Farm-
CPU models. It was noted that the multi-locus GWAS models, like FarmCPU, outperform
the single-locus models(GLM). The single-locus models were relatively successful for the
traits with high heritability. The extent of identification of true positives is high for single-
locus models for the traits with high heritability; however, the number of identified false
positives also increases roughly at the same time. This issue becomes particularly evident
with the FDR correction of p-values at the 5 percent significance level. Among the various
multi-locus models, the FarmCPU is preferred because it gives fewer false positives with
FDR at a 5% significance level [24–28] compared the efficiency of several GWAS models for
various traits in different crops and pointed out that the multi-locus models, viz., MLMM
and FarmCPU, were more efficient in identifying associations.

In addition to this, the QTNs identified from the current study were found to be located
in annotated genes with functional domains implicated in defence mechanisms in maize
and other crops. The highly significant QTN S1_7356398 on chromosome 1, identified
from the GLM model, had two candidate genes, viz., Zm00001eb002620 (chitinase) and
Zm00001eb002610 (putative serine/threonine protein kinase), within its downstream region.
Chitinases are a group of pathogenesis-related (PR) proteins that hydrolyze chitin, a key
structural component of fungal cell walls, thereby restricting the pathogen invasion and
spread. Enhanced expression of the gene has been linked to resistance against several
fungi. Cazares-Alvarez et al. [21] found that the chitinase family genes are involved in plant
development, hormone response, and abiotic stress response, along with defence response
against infection by Fusarium verticillioides (Sacc.) Nirenberg, which causes Fusarium stalk
rot in maize.

The nearby Zm00001eb002610 gene encodes a putative serine/threonine protein kinase,
a class of signalling proteins that are involved in phosphorylation cascades in plant immune
responses. Serine/threonine kinases have been reported to participate in brassinosteroid-
mediated signalling pathways that regulate both biotic and abiotic stress tolerance [29,30].

Another significantly associated QTN, S1_290805849, also located on chromosome 1
and identified by the FarmCPU model, was found near the Zm00001eb059630 (aldehyde
oxygenase) gene. This gene is primarily involved in fatty acid biosynthesis and metabolism,
processes known to influence membrane stability and defence signalling under pathogen
attack. In sorghum, aldehyde oxygenase (SORBI_3004G218100) was differentially expressed
in grains infected with the smut fungus Sporisorium reilianum, suggesting its conserved role
in plant defence against fungus [31]. Collectively, these candidate genes highlight potential
biochemical and signalling pathways that may contribute to NCLB resistance in maize
through strengthened cell wall defence, hormone signalling, and oxidative metabolism.

Although we did not perform expression or functional assays in the current study, the
QTNs identified in proximity to Zm00001eb002620, Zm00001eb002610, and Zm00001eb059630
are biologically plausible candidates for NCLB resistance. Their established roles in
pathogen recognition, defence signalling, and secondary metabolite production in maize
and related species [21,29,31], together with the statistical association with resistance phe-
notypes, provide a strong rationale for further experimental validation. Future studies,
including transcript profiling and functional characterization, are needed to confirm their
roles in mediating NCLB tolerance.

4. Materials and Methods
The experimental material consisted of 336 maize inbred lines procured from CYMMIT,

Hyderabad, India. These lines were evaluated for their response to NCLB disease under
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artificial epiphytotic conditions in Hassan for two seasons (rainy seasons of 2023 and 2024)
in an alpha lattice design with two replications. Each inbred was sown in a 2 m row with
60 cm between the rows and 20 cm between the plants, ensuring uniform plant density and
population equilibrium across the field. Standard agronomic and plant protection measures
were followed, except for the targeted foliar disease, to promote natural infection.

4.1. Screening for NCLB

A pure culture of Exserohilum turcicum was obtained and grown on the PDA media. It
was used for inoculating the sterile sorghum grains. The inoculated sorghum grains were
then cultured at room temperature for two weeks. The colonized grains were ground into a
fine powder, which was used for inoculating the test entries 30 days after planting. A pinch
of grounded powder was applied to each plant’s whorl, followed by a water spray. Obser-
vations on disease symptoms were recorded 75 days after planting, following a 1–9 scale
given by [32,33]. Plants with a disease score ≤ 3 were categorized as resistant, 3.1 to 5 as
moderately resistant, 5.1 to 7 as moderately susceptible, and above 7 as susceptible. The
phenotype of plants for different disease scores is given in Figure 7.

 

Figure 7. Figure depicting disease scoring scale for northern corn leaf blight response.

4.2. Statistical Analyses

A mixed linear model was employed to analyze phenotypic data from the alpha lattice
design, considering genotypes, environments, and the interactions between genotype and
environment, as well as replication and environment, as random effects.

Yijko = µ + gi + lj + rkj + bojk + eijko

where Yijko is the phenotypic performance of the ith genotype at the jth environment in the
kth replication of the oth incomplete block, µ is the intercept term, gi is the genetic effect of
the ith genotype, lj is the effect of the jth environment, rkj is the effect of the kth replication
at the jth environment, bojk is the effect of the oth incomplete block in the kth replication at
the jth environment, and eijko is the residual.
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The BLUPs were computed using Meta R version 8.1, using the following general
linear model:

Yijkl = µ + Envi + gj + Rk(Envi) + Block(Rk(Envi))+eijkl

Yijkl = NCLB response of each genotype.
µ = Overall mean.
Envi = Fixed effect of the ith environment.
gj∼N (0, σ2

g ) = Random effect of the jth genotype.
Rk(Envi) ∼N (0, σ2

R) = Random effect of the kth replication nested within environment.
Block (RkEnvi) ∼ N

(
0, σ2

B
)

= Random effect of the lth block nested within
replication × environment.

eijkl ∼ N
(
0, σ2

e
)

= Residual error.
Furthermore, the genetic variability parameters viz., phenotypic coefficient of varia-

tion (PCV), genotypic coefficient of variation (GCV), broad-sense heritability, and genetic
advance as percent mean are computed.

The formula for the calculation of PCV and GCV are given below [34]:

PCV (%) =

√
σ2

p

x
× 100

where
σ2

p—phenotypic variance, and X—overall mean;

GCV (%) =

√
σ2

g

x
× 100

where
σ2

g—genotypic variance, and X—overall mean.
The expected genetic advance as a percent of the mean was estimated as follows [35]

GAM =
GA
µ

× 100

where GA is the genetic advance and µ is the general mean.
Genetic advance is computed using the formula given below:

GA = k × h2
b ×

√
σ2

p

where k = selection differential (2.06) at 5% selection intensity, and
√

σ2
p = phenotypic standard deviation,

h2
b = broad senese heritability.

The broad-sense heritability across multi-season data was estimated as follows:

H2 =
σ2

g

(σ 2
g +

σ2
ge
e + σ2

e
er )

where σ2
g , σ2

ge and σ2
e are the genotypic, genotype by environment interactions, and er-

ror variance components, respectively; and r and e are the number of replications and
environments within each of the environments included in the analysis.
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4.3. Genotyping

The 336 maize inbreds from CYMMIT were genotyped using GBS, and data concerning
955,690 SNPs was obtained. The marker data was filtered for percent heterozygosity (0.25),
minor allele frequency (0.05), and call rate (0.70) using TASSEL version 5.2 [36]. A total of
289,701 SNPs retained were used in further analysis.

4.4. Population Structure and LD Analysis

The population structure existing in the experimental material was assessed utilizing
principal component analysis. The genome-wide LD between all possible pairs of SNPs
was estimated using the weighted average of squared allele frequency correlations (r2),
using the ‘gapit’ package of R software version 4.4.3. The LD decay curve was obtained by
analyzing the LD between all possible pairs of SNPs to visualize genome-wide LD patterns.

4.5. GWAS Analysis

GWAS analysis was performed using six different models that include both single-
and multi-locus models. The general linear model (GLM) is a basic fixed-effects single-
locus model that incorporates population structure through principal components (PCs)
or a Q-matrix; however, it lacks a kinship component, making it highly prone to false
positives [37]. The mixed linear model (MLM), another single-locus model, overcomes
this limitation by including both population structure (Q or PCs) and a kinship matrix
(K), thus controlling for both relatedness and structure [38]. To enhance computational
efficiency, the compressed MLM (CMLM) model clusters individuals based on genetic
similarity before fitting the MLM [39]. The multi-locus mixed model (MLMM) further
refines this approach, by incorporating significant marker cofactors identified through
stepwise regression, increasing its power to detect multiple loci [40]. FarmCPU (Fixed And
Random Model Circulating Probability Unification) iteratively separates fixed and random
effects, using PCs and selected markers as covariates to avoid overfitting and to reduce false
positives [28]. BLINK (Bayesian Information and Linkage Disequilibrium Iteratively Nested
Keyway) improves upon FarmCPU by removing the kinship matrix altogether and utilizing
LD information, thereby enhancing computational speed and power, especially for large
datasets. Each model applies a unique combination of covariates, such as Q-matrices, PCs,
kinship matrices, and marker cofactors to effectively control population structure, genetic
relatedness, and marker confounding, and is selected based on the genetic architecture of
the trait and computational resources available. All six GWAS models were employed to
identify the marker associations linked to NCLB disease resistance.

4.6. QQ-Plot and Manhattan Plot

The QQ-plot is the graphical representation of the deviations of the observed p-values
from the normal distribution. The observed p-values from each of the SNP markers are
plotted against expected values from a theoretical χ2-distribution to study the genomic
inflation using R software’s ‘gapit’ package version 4.4.3. Manhattan plots were plotted,
with the genomic coordinates displayed along the X-axis, and the negative logarithm of the
association p-value for each SNP marker displayed on the Y-axis, indicating the significant
association of SNP markers to disease resistance.

5. Conclusions
This study demonstrates the effectiveness of genome-wide association studies in

dissecting the genetic basis of northern corn leaf blight (NCLB) resistance in maize. The
QTNs identified in proximity to genes such as chitinase, serine/threonine protein kinase,
and aldehyde oxygenase suggest key roles for pathogen recognition, defence signalling,
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and secondary metabolite production in mediating resistance. These insights enhance our
understanding of the molecular mechanisms underlying quantitative resistance to NCLB
and provide valuable targets for the marker-assisted selection and breeding of resistant
maize cultivars. Future studies incorporating expression profiling and the functional
validation of these candidate genes will be crucial for translating these associations into
durable resistance strategies in maize production.
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