Computational Biology and Chemistry 119 (2025) 108562

Contents lists available at ScienceDirect

Computational
Biology and
Chemistry

Computational Biology and Chemistry

ELSEVIER journal homepage: www.elsevier.com/locate/cbac

Check for

Decoding the role of novel long noncoding RNAs Inc-SLC6A12-1:3 and | e
Inc-SLC6A12-7:5 in regulating the expression of GAD1 and SLC6A12

in cholangiocarcinoma
Sharma Manjunath Arun, Neerkaje Subrayabhat Devaki '

Department of Molecular Biology, Yuvaraja’s College, University of Mysore, Mysuru, Karnataka 570005, India

ARTICLE INFO ABSTRACT

Keywords: Cholangiocarcinoma (CCA) is an aggressive bile duct malignancy with a poor prognosis and limited treatment
LDCRNA' ) options. Recent studies highlight the role of metabolic and signalling pathways in tumour progression and
Cholangiocarcinoma resistance, including neurotransmitter-related pathways like gamma-aminobutyric acid (GABA). Key GABA-
ZZC;;UZ associated genes, such as Solute Carrier Family 6 Member 12 (SLC6A12), a GABA transporter and Glutamate

Lnc-SLC6A12-1:3 Decarboxylase 1 (GAD1) involved in GABA synthesis, are implicated in cancer but remain poorly understood in

Lnc-SLC6A12-7-5 CCA. This study aims to identify novel long non-coding RNAs (IncRNAs) specifically associated with chol-
angiocarcinoma (CCA) and to explore their potential mechanisms of action. By integrating transcriptomic data
and interaction prediction tools, we focus on IncRNAs that are linked to key differentially expressed metabolic
genes, thereby uncovering their possible roles in the metabolic reprogramming of CCA. Using RNA-Seq data from
the Sequence Read Archive (SRA), differential expression analysis identified 84 differentially expressed meta-
bolic genes (DEMGs) associated with metabolic pathways. Gene ontology and pathway analyses using DAVID
and Reactome database revealed pathway enrichment due to DEGs, while protein interaction using STRING,
functionally connected SLC6A12/BGT1 and GAD1/GAD67. Two novel downregulated long non-coding RNAs
(IncRNAs), Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5, were identified based on expression correlations and
genomic proximity to SLC6A12 and GADI genes. Interaction predictions using IntaRNA and IncTAR tools sug-
gested IncRNA-mRNA interactions between the IncRNAs and mRNAs (SLC6A12 and GAD1). Transcription factor
(TF) enrichment analysis using the CiiiDER tool and RNA-protein interaction predictions with the catRAPID tool
revealed Inc-SLC6A12-1:3 functions as a regulatory scaffold, influencing the transcription of SLC6A12 and GAD1
by recruiting TFs such as IRF1, THAP1, FOSL1, and NR4Al. Whereas Inc-SLC6A12-7:5 did not show strong
binding to TFs. In Ideal conditions, Inc-SLC6A12-1:3 enhances SLC6A12 expression by promoting IRF1 and
FOSL1 activity but antagonises THAP1 and NR4Al, leading to the checked expression of GADI. These in-
teractions highlight a complex regulatory network where Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5 differentially
modulate transcription factor activity, balancing the expression of these key genes in CCA. For the first time, this
in silico study reveals that two novel long non-coding RNAs, Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5, regulate the
expression of SLC6A12 and GAD1 through cis and trans binding interactions, respectively. Based on these in-
teractions, we hypothesise that these IncRNAs may contribute to the modulation of the GABAergic pathway,
which plays a crucial role in fulfilling the high energy demands of cholangiocarcinoma cells. Further experi-
mental validation and investigation into the regulation of SLC6A12 and GAD1 are required to gain deeper in-
sights into CCA pathogenesis and to identify potential therapeutic targets.

1. Introduction from the biliary epithelium, constitutes 15 % of primary liver cancers
and 3 % of gastrointestinal malignancies (Elgenidy et al., 2022). CCA is
Cholangiocarcinoma (CCA) is an aggressive malignancy originating classified anatomically into intrahepatic (iCCA), perihilar (pCCA), and
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distal (dCCA) subtypes. While pCCA is the most prevalent, accounting
for 50-60 % of CCAs. It is the second most common primary liver cancer
after hepatocellular carcinoma. In the United States, bile duct cancer is
relatively rare, with about 8000 new cases diagnosed annually
(Statistics About Bile Duct Cancer | Cholangiocarcinoma Stats | Amer-
ican Cancer Society, n.d.). The incidence of CCA has been increasing
globally, with notable rises in both intrahepatic and extrahepatic forms
(Patel, 2002). However, the actual number may be higher due to diag-
nostic challenges. Mortality rates have also shown an upward trend; for
instance, in Europe, the age-standardised mortality rate rose from 2.6
per 100,000 in 2001-4.7 per 100,000 in 2017 (Genus et al., 2019).
Despite advancements in medical science, the prognosis for CCA remains
poor, with a five-year survival rate of less than 10 % for most patients
(Elgenidy et al., 2022). The global incidence and mortality of CCA are
increasing, with a 5-year survival rate of 7-20 % and poor outcomes due
to late-stage diagnosis and limited therapeutic options. iCCA is highly
aggressive and characterised by an abundant tumour microenvironment
(Banales et al., 2020; Louis et al., 2020; Sulpice et al., 2013, 2016). This
study aims to identify novel IncRNAs associated with CCA by focusing
on those linked to differentially expressed metabolic genes. We further
investigate their potential mechanisms of action, such as interactions
with transcription factors and mRNAs, to provide insights into their
regulatory roles in CCA progression.

Gamma-aminobutyric acid (GABA) is a key component of the tumour
microenvironment, and it also plays a central role in the GABA shunt
pathway in cancer. This pathway facilitates the conversion of a-keto-
glutarate, generated in the TCA cycle, into succinate via the in-
termediates glutamate, GABA, and succinic semialdehyde (Balazs et al.,
1970; Sarasa et al., 2020), with succinic semialdehyde being oxidised to
succinate by succinic semialdehyde dehydrogenase (SSADH), which
then re-enters the TCA cycle (Samborska et al., 2021; Struys et al.,
2005). This GABA shunt pathway is utilised by cancer cells for its high
energy requirement. When GABA is secreted into the extracellular space,
it acts as a neurotransmitter in Neuron-Glia Interactions (Vélez-Fort
et al., 2011), whereas in cancer, it is involved in tumour progression,
invasion and immune evasion (Huang et al., 2022; Li et al., 2023). GABA
synthesis is regulated by two isoforms of glutamate decarboxylase
(GAD): GAD2/GAD65 and GAD1/GAD67. While GAD65 primarily fa-
cilitates GABAergic synaptic transmission and plasticity, GAD67 is
responsible for metabolic GABA production (Lange et al., 2014; Li et al.,
2023). GAT1, SLC6A13/GAT2, GAT3, and SLC6A12/BGT1 are involved
in regulating GABA levels, with GAT1, SLC6A13, and GAT3 primarily
responsible for GABA reuptake in the brain, while SLC6A12 not only
participates in GABA transport but also helps maintain osmotic balance
and regulates betaine levels in the brain, kidney, and liver highlighting
its broader roles (Bhatt et al., 2023; Kempson et al., 2014). Glutamate
decarboxylase 1 (GAD1) is an enzyme that catalyses the conversion of
glutamate to GABA. GAD activity is increased in certain types of human
tumours such as colon, gastric, ovarian, and breast cancers (Young and
Bordey, 2009). Studies have linked the GABAergic system to neoplastic
processes, with increased GABA content and GAD activity observed in
colon and breast cancer tissues. In a study, GABA content and GAD ac-
tivity were significantly elevated in neoplastic tissue compared to the
unaffected stomach tissue (Matuszek et al., 2001). Increased GABA
levels and GAD activity were found in human colon cancer tissue
compared to normal colon tissue from the same patients. Comparable
findings were observed in athymic mice transplanted with human colon
adenocarcinoma cells, where increased levels of GABA and GAD activity
were detected in growing tumours compared to unaffected tissues.
Notably, GAD activity was also markedly higher in the unaffected colon
tissue adjacent to tumours in tumour-bearing mice compared to healthy
control mice, while GABA levels were normal in the skin tissue, which is
away from the tumour of experimental mice. These findings suggest that
altered GABA metabolism may reflect a local immune response to can-
cer, and targeting the GABAergic system could offer therapeutic po-
tential (Kleinrok et al., 1998). Elevated GABA levels and GAD activity in
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tumour tissue compared to normal mammary tissue in both humans and
mice, with a positive correlation between the two. This increase may
indicate a local immune response or tumour hypoxia (Mazurkiewicz
et al., 1999). Many differentially expressed genes (DEGs) related to the
tumour microenvironment (TME) were identified, primarily enriched in
immune-related processes and pathways. Among these, GAD1 was
developed to predict cholangiocarcinoma (CCA) prognosis (Cao et al.,
2021). Although direct evidence of GABA in CCA is scarce, the
involvement of GADI and SLC6A12 in GABA synthesis suggests a po-
tential role in modulating the tumour microenvironment and involve-
ment of GABA in the GABA shunt pathway for increased energy
demands in CCA.

Investigating the regulation of GAD1 and the SLC6A12 in CCA could
uncover potential novel therapeutic targets, highlighting the critical role
of the GABAergic system in cancer progression. Although no known
interactions have been reported involving the long non-coding RNAs
(Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5), which regulate the genes
involved in GABA synthesis (GAD1) and GABA transport (SLC6A12), this
study seeks to establish a potential link among them by focusing on both
IncRNA-mRNA interaction and IncRNA-protein interaction.

2. Materials and methods
2.1. Retrieval and processing of RNA-seq data

To investigate novel IncRNAs in Cholangiocarcinoma (CCA) patients,
the dataset comprising 18 samples from adjacent non-tumour/normal
liver tissues and 16 tumour samples was retrieved from SRP159264
available in the Sequence Read Archive (SRA) database (Katz et al.,
2022).

Raw RNA-Seq data were downloaded as Fastq files using the function
“fastq-dump— split-files”. Quality check was assessed using FastQC.
HISAT?2 aligner was used to trim and align the reads to the human hg38
reference genome (Andrews, 2010). and were further compressed, sor-
ted, and indexed using SAMtools (Desai et al., 2022; Kumari et al.,
2021). The "flagstat" function within SAMtools was used to evaluate the
quality of aligned files. The "coveragebed" function from the BEDTools
suite was used to obtain the data matrix file (Quinlan and Hall, 2010).
The BED file containing long non-coding RNA (IncRNA) and mRNA data
was obtained from the LNCipedia database and UCSC Table Browser,
respectively (Karolchik et al., 2004; Volders et al., 2013). To analyse the
differential expression of the global transcriptome, we performed sta-
tistical evaluations on the read count files using the DESeq2 package in
RStudio (Love et al., 2014). Additionally, the read counts were nor-
malised to transcripts per million (TPM) to ensure comparability across
samples and improve the accuracy of downstream analyses (Fig. 1).
Validation was performed using the TCGA-CHOL dataset, which in-
cludes 9 normal and 35 primary tumour patient samples.

2.2. Global transcriptome analysis using DeSeq2 and metabolic pathway
filtering

For a comprehensive understanding of the differential expression of
the global transcriptome, we applied statistical analysis using the
DESeq2 package to the read counts files (Love et al., 2014). The results
from DESeq2 were integrated with the TPM data frame using gene
symbols as the common key. To compute fold change (FC) for each
tumour sample, the TPM value of the tumour samples was divided by the
geometric mean of TPM values from normal samples. The resulting FC
values were then log2 transformed to derive log2 fold change (12fc)
values. To shortlist mRNAs, we utilised 748 metabolic functional gene
annotations from the nCounter® Metabolic Pathways Panel. This panel
encompasses key pathways and processes essential for defining cellular
metabolism. These 748 genes are then further filtered, where statisti-
cally significant mRNAs were filtered based on the DESeq2 data and
mRNAs with a p-value greater than 0.05 were excluded. Differentially
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Fig. 1. RNA-Seq pipeline for analysing differential expression of both IncRNA and mRNA. The schematic outlines the RNA-seq pipeline beginning with quality
control using FastQC, followed by trimming and alignment of the reads to the reference genome with HISAT2. Read counts are then quantified using feature Counts
with Samtools and BEDtools. Finally, TPM is used for expression level comparison, and DESeq2 for normalisation and differential expression analysis. The data is then

analysed and visualised using different statistical and graphical outputs.

expressed metabolic genes (DEMGs) were identified based on 12fc
thresholds, greater than 2 or less than —2, for each tumour sample.
Detailed computational and statistical protocols are available in the
accompanying R script (Supplementary file 1)

2.3. Functional enrichment and pathway analysis using DAVID and
reactome databases

The identified gene list was analysed using the DAVID database by
employing the "Functional Annotation Clustering" function with default
parameters (Dennis et al., 2003). The output was saved in a TSV format
and imported into R using “read.csv”. R libraries such as ggplot2, dplyr,
and ggrepel were utilised for data processing and visualisation. The
results were sorted by false discovery rate (FDR). From the ranked data,
the top 10 entries were selected, focusing on Gene Ontology (GO) an-
notations, including GO Biological Processes (GO_BP), Cellular Com-
ponents (GO_CC), and Molecular Functions (GO_MF). The Reactome
Database was used to get the metabolic pathway Annotations, and the
default parameters were used (Milacic et al., 2024). These annotations
were visualised in a bubble plot generated using ggplot2, which dis-
played the relationship between rank, -logl0(FDR), gene size, and
process labels. This visualisation provided an intuitive overview of the
enriched functional categories and their statistical significance, aiding in
the interpretation of the underlying biological processes.

2.4. Screening differentially expressed IncRNAs based on genomic Loci
and expression pattern correlation

LncRNAs were considered relevant and shortlisted if they were

located within the same genomic region as the shortlisted mRNAs of
interest by showing a significant positive or negative correlation with p-
value < 0.05 and an L2FC greater than 2 or less than —2. This
comprehensive approach enhances the accuracy of identifying differ-
entially expressed IncRNAs that may have functional roles related to the
regulation of protein-coding genes. Detailed steps can be found in the R
script provided as Supplementary file 1.

2.5. IncRNA-mRNA interaction

RNA-RNA interactions were predicted using IntaRNA (version 2.0)
with default parameters (Mann et al., 2017). The RNA sequences were
retrieved from the UCSC Genome Browser and LNCipedia. IntaRNA was
locally installed and used to predict RNA-RNA interactions between
IncSLC6A12.1 and SLC6A12 mRNA wusing minimum free energy
(MFE)-based modelling. The analysis was performed with -mode=M,
specifying mRNA as the target (-t mRNA.fa) and IncRNA as the query (-q
IncRNA.fa), enforcing a minimum base-pairing constraint of four
consecutive nucleotides (-seedBP=4). Output files (tMinE, qMinE, and
pMinE) were generated to extract minimum energy profiles and identify
high-confidence binding regions, which were further analysed using
custom R scripts for Heatmap visualisation. As validation, IncTAR was
applied to the IntaRNA-identified IncRNA-mRNA regions, using a nor-
malised AG cutoff of zero to confirm interactions.

2.6. IncRNA-protein interaction

To identify enriched transcription factors, the CiiiDER tool was used,
DEMGs serving as the gene set, while non-differentially expressed
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mRNAs with a log2 fold change (L2FC) between —0.4 and 0.4 were used
as the background. This approach enabled the identification of the top-
enriched transcription factor (Gearing et al., 2019). Additionally,
catRAPID was utilised to analyse IncRNA-transcription factor in-
teractions. Protein FASTA sequences were retrieved from UniProt, while
IncRNA sequences were obtained from LNCipedia. catRAPID was
executed with default parameters, and the top-ranking interactions be-
tween IncRNAs and transcription factors were identified (Armaos et al.,
2021).

2.7. Gene interaction prediction and network visualisation using STRING
database

The STRING (Search Tool for the Retrieval of Interacting Genes/
Proteins) database was utilised to predict interactions among the
shortlisted genes and visualise their complex networks. For the analysis,
we used the DEMGs as input and the Markov Cluster Algorithm as a
scalable unsupervised clustering algorithm for the network graphs with
an interaction score threshold of > 0.4 (Franceschini et al., 2013).

3. Results

3.1. Screening and differential expression analysis of metabolic genes in
tumour samples

748 Metabolic functional gene annotations from the nCounter®
Metabolic Pathways Panel, encompassing core pathways and processes
critical to cellular metabolism, were utilised to shortlist mRNAs. These
mRNAs are then filtered based on P-value (< 0.05) where 494 mRNAs
are found to be significantly expressed (Fig. 2a). The subsequent level 2
filter revealed "41" mRNAs overexpressed with L2FC values greater than
2 and "43" mRNAs downregulated with L2FC less than —2 across all
analysed tumour samples, accounting to 84 differentially expressed

Biologically Significant Metabolic Genes with P-Value < 0.05

Normal Samples

Tumour Samples
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metabolic genes (DEMGs) (Fig. 2b).

3.2. Pathway analysis and functional categorisation of differentially
genes

The DEMGs were categorised based on their roles in cellular meta-
bolism as annotated by the nCounter® Metabolic Pathways Panel.
Upregulated genes are distributed across 22 cellular metabolic pathways
(CMPs), while downregulated genes are associated with 17 pathways.
Among these, 11 pathways contain both overexpressed and down-
regulated genes (Fig. 3a). The top 10 enriched CMPs include Autophagy,
Cytokine & Chemokine Signalling, Fatty Acid Synthesis, Cell Type, PI3K,
Nucleotide Salvage, NF-kB, Amino Acid Transporters, Glutamine Meta-
bolism, and the Pentose Phosphate Pathway, with the percentage of
genes involved ranging from 6.9 % to 30.7 % (Table 1). Conversely, the
top 10 pathways with downregulated genes include Epigenetic Regu-
lation, Transcriptional Regulation, AMPK, Glutamine Metabolism, An-
tigen Presentation, Tryptophan/Kynurenine Metabolism, Glucose
Transport, Internal Reference, Amino Acid Synthesis, and PI3K, with the
percentage of genes involved ranging from 5.2 % to 41.6 % (Table 2).
Among these, the PI3K and Glutamine Metabolism pathways exhibit
both overexpressed and downregulated genes. In the PI3K pathway,
10.5 % of the genes are upregulated, while 5.2 % are downregulated.
Similarly, 7.5 % of the genes are upregulated in the Glutamine Meta-
bolic pathway, whereas 22.5% are downregulated, indicating a
nuanced regulation of these pathways (Tables 1-2).

Network analysis was conducted using the DAVID and Reactome
databases, with all 84 DEMGs provided as input under default param-
eters. In DAVID, only the enrichment of Gene Ontology (GO) annotation
terms was considered. From the results of both DAVID and Reactome,
the top 10 pathways meeting the criteria of at least three gene counts per
pathway and FDR < 0.05 were selected and bubble plots were plotted,
where the x-axis represents the rank of pathways based on enrichment

b

DEMGs with P-value <0.05, L2fc >2 and L2fc < -2

Q
Q
<3

}
>0

L——

Tumour Samples Normal Samples

Fig. 2. Metabolic pathway genes expression pattern using TPM normalised data. Heatmap Comparison of genes represented as Metabolic pathway genes with
filtering based on parameters as defined below. a. Heatmap showing the expression of mRNAs with a p-value less than 0.05. b. Heatmap showing the expression of
mRNAs, focusing only on those with a p-value less than 0.05 and 12fc greater than 2 and 12fc less than —2 (Green denotes low expression and Red denotes

high expression).
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Fig. 3. Deregulated and enriched pathways. a. Venn diagram illustrating the distribution of upregulated, downregulated, and pathways containing both upregulated
and downregulated genes in CCA. b & c. Bubble plots representing pathway enrichment analysis of DEGs using DAVID and Reactome databases. "Count" denotes the
number of DEGs enriched in each pathway. The X-axis represents the rank, indicating the number of deregulated genes representing the pathway, while the Y-axis
shows the -log10(FDR). The number of genes representing deregulated genes is denoted by "#genes". The top 10-ranked pathways are depicted in the plot.

significance, and the y-axis displays the -logl0(FDR), indicating the
statistical significance of the pathways. Each bubble corresponds to a
specific pathway, with the legend showing the rank, pathway name, and
associated gene count (Fig. 3b—c).

The most significant GO terms include the heme binding, alcohol
dehydrogenase (NAD" Activity and retinol metabolic process. Mid-range
significant pathways include monooxygenase activity, omega-
hydroxylase P450 pathway, response to starvation, hepatocyte differ-
entiation and iron ion binding. Lower-ranked yet statistically relevant
pathways include the retinoic acid metabolic processes and cell division.
Cell division and heme binding pathways each involve 9 genes, making
them the GO terms with the highest gene representation (Fig. 3 b).

Metabolism emerges as the most enriched pathway using the Reac-
tome database, involving 57 genes, followed by metabolism of amino
acids and derivatives and cell cycle, with 22 genes each ranking 1% and
4™ based on FDR value, ethanol oxidation ranks 2™ with 9 genes. Polo-
like kinase-mediated events, mitotic cell cycle, and FOXO-mediated
transcription of oxidative stress show Mid-range significance involve-
ment, which can be grouped under cell division and stress responses.
Other pathways, including "Phase I - Functionalization of compounds,
cell cycle checkpoints and FOXO-mediated transcription," emphasise the
role of metabolic and regulatory and cell cycle pathways (Fig. 3c).

3.3. Differential expression of LncRNAs in tumour and normal samples

LncRNAs are non-coding RNAs longer than 200 nucleotides.
LncRNAs transcribed from the same loci as deregulated mRNAs were
included, identifying 441 IncRNAs, including IncRNA isoforms and
variants, corresponding to 84 deregulated genes. Among these 441

IncRNAs, 200 were statistically significant, with a p-value less than 0.05
(Fig. 4a). None of these 200 IncRNAs were upregulated with a log2 fold
change (12fc) greater than 2 but 34 IncRNAs were downregulated 12fc
< -2 (Fig. 4b). However, 18 IncRNAs were downregulated with an 12fc
less than —2, and showed a transcript per million (TPM) value below 0.8
across all tumour samples (Fig. 4c). Among these 18 IncRNAs, two novel
IncRNAs (Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5) were expressed with
a TPM value greater than 0.7 in all normal samples (Fig. 4d). These
IncRNAs are intronic IncRNAs which are located within the locus of gene
SLC6A12. And could be involved in the regulation of the gene by the cis-
acting function of the IncRNA (Gil and Ulitsky, 2019). To confirm this,
we performed an IncRNA-mRNA interaction study using the IntaRNA
tool.

3.4. Functional insights into IncRNA-mRNA interactions: stability and
binding dynamics

Inc-SLC6A12-1:3 is transcribed from the locus overlapping with
SLC6A12 and Inc-SLC6A12-7:5 corresponding SLC6A13 locus adjacent
to SLC6AI2 on the genome (Fig. Sla-Slc). The analysis of IncRNA-
mRNA interactions highlights the functional roles of IncRNAs, which
either suppress gene expression or enhance gene stability. IntaRNA
analysis revealed distinct minimum interaction energies among the
IncRNA-mRNA pairs. The pair Inc-SLC6A12-1:3 and SLC6A12 exhibited
the lowest interaction energy of —44.34 kcal/mol, indicating the highest
interaction, occurring between nucleotides 283-409 of Inc-
SLC6A12-1:3 and 2526-2665 of SLC6A12, signifying a thermodynam-
ically favourable and stable binding (Figs. 5a, 5g & S2a). Conversely, the
pair Inc-SLC6A12-7:5 and SLC6A12 displayed an interaction energy of
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Table 1

Top Enriched Pathways with Upregulated Genes in CCA. The table presents the top enriched pathways based on upregulated genes in cholangiocarcinoma (CCA).
Columns include the pathway name, the total number of genes in the pathway (Total Gene_Count_in_Pathway), the number of upregulated genes (Upr_Gene_Count)
and the percentage of upregulated genes within each pathway. Pathways such as autophagy, cytokine & chemokine signaling, and fatty acid synthesis exhibit the
highest proportion of upregulated genes, highlighting their potential role in CCA progression.

Unique_Pathway Total_Gene_Count_in_Pathway_  Genes_Under_Pathway Upr_Gene_Count  Upr_Genes_Under_Pathway Percentage

Autophagy 65 ABL1,BRCA1,BRCA2,BRCC3,BRIP1, 20 BUBI1B,CCNB2,CDCAS5,CDCAS, 30.76923077

BUB1,BUB1B,CCNB2,CDCAS5,CDCAS,
CENPA,CLSPN,EXO1,FOXM1,GSK3B,
GTSE1,HJURP,HSPA2,JAK2,MKI67,

CENPA,CLSPN,EX0O1,FOXM1,GTSE1,
MKI67,MYBL2,NCAPH,PLK1,PRIM2,
SMAD3,TK1,YWHAZ,CDC20,KIF2C,

MYBL2,MYC,NCAPH,NDC1,NPM1,
NUP205,NUP62,PLK1,POLE,PRIMI,
PRIM2,PTK6,RAD51,RANBP2,RRM2,
SEM1,SMAD2,SMAD3,SMAD4, TK1,
TP53,TPR, TYMS, WRN, YWHAZ,
CCNA1,CCNA2,CCND1,CDC20,
KIF2C,MAPK1,PSMA3,PSMA?7,
PSMB1,PSMB10,PSMB3,PSMC,
PSMD13,PSMEZ2,SEC13,UBB,UBE2C,
AKT1,AKT2,AKT3
COPS6,DTL,EME1,ERCC6,FANCA, 6
FANCD2,FANCI, GPS1,MSH2,PCLAF,
RAD51AP1, TIMELESS, UBE2T,
XRCC2,ABL1,BRCA1,BRCA2,BRCC3,
BRIP1,CLSPN,EX0O1,KPNA2,POLE,
POLR2A,RAD51,WRN,CCNAI,
CCNA2,MAPKS8,TP53,UBB
SLC2A1,SLC2A14,SLC2A3,SLC2AS5, 1
SLC2A6,SLC2A8
ABCF1,AGK,COG7,DHX16,DNAJC14, 3
EDC3,FCF1,G6PD,MRPS5,NRDE2,
0AZ1,POLR2A,SAP130,SDHA,
STK11IP,TBC1D10B, TBP, TLK2,UBB,

USP39

DERA,H6PD,IDNK,PGD,RBKS,RGN, 2
RPIA, TKT,ALDOA,ALDOB,GLYCTK,
PRPS1,TALDO1,FBP1,G6PD,GPI,
PFKL,PFKM,PGM2
AK3,CDK9,CTPS1,GART,GDA,GMPS, 5
IMPDH1,IMPDH2,NPR1,NPR2,NT5E,
PRPS1,RRM1,UMPS,XDH,ADA,ADK,
AMPD1,AMPD2,AMPD3,APRT,CDA,
DCK,DGUOK,GMPR, GMPR2,HPRT],
NMEI1,NMEZ2,PGM2,PKLR,PKM,PNP,
PRIM1,PRIM2,RRM2, TK2, TYMP,
TYMS,UCK1,UCK2,UCKL1,UPP1,
UPP2,CAD,POLE,POLR2A,PPAT, TK1
ADA,ADAL,ADK,AMPD1,AMPD2, 2
AMPD3,APRT,CDA,DCK,DGUOK,
GMPR,GMPR2,HPRT1,PNP,PUDP,

TK2, TYMP,UCK1,UCK2,UCKL1,
UPP1,UPP2,TK1
AP2S1,BTK,CD14,CDC20,CTSA, 3
CTSD,CTSL,CTSS,CYBB,HERC1,HLA-
A,HLA-C,HLA-DQA1,HLA-DRBI,HLA-
E,ITCH,ITGB5,KEAP1,KIF2C,LAG3,
LY96,MYD88,PSMA3,PSMA7,PSMBI1,
PSMB10,PSMB3,PSMC1,PSMD13,
PSME2,SEC13, TLR2, TLR4, UBE2C,
VHL,CD36
ALDOA,ALDOB,ENO1,ENO3,GAPDH, 3
GAPDHS, GCK, GPI,HK1,HK2,HK3,
PDHA1,PGK1,PGM2,PKLR,PKM,
FBP1,G6PC,LDHA,LDHB,LDHC,PCK1,
PCK2,PFKFB1,PFKL,PFKM,PGAM2,
ADHIA,ADH1B,ADH1C,ADH4,ADH6,
ADH7,ALDH2,NDC1,NUP205,NUP62,
RANBP2,SEC13,TPR
APOE,ATOX1,CA12,CAT,DUOX], 3
DUOX2,GPX1,GPX4,KRT1,MPO,
MSRB2,MTF1,NOX1,NOX3,NOX4,
PEBP1,PRDX5,PRKN,PTGS1,
SELENOK,SOD3, TXN2,ERCC6,FDX1,
FDXR,GCLC,IDH1,NDUFA12,
NDUFA6,NDUFB4,NDUFS8,NQO1,
PRDX1,SLC7A11,S0D1,ABL1,BCL2,

UBE2C

Cytokine & 31 19.35483871
Chemokine

Signaling

EME1,FANCD2,MSH2,XRCC2,CLSPN,
EXO1

Fatty Acid 6 16.66666667
Synthesis

Cell Type 20

SLC2A1

EDC3,G6PD,TBC1D10B 15

PI3K 19 ALDOA,G6PD 10.52631579

Nucleotide Salvage 49 PKM,PRIM2,UCK2,CAD,TK1 10.20408163

NF-KB 23 UCK2,TK1 8.695652174

Amino Acid 36 8.333333333

Transporters

CDC20,KIF2C,UBE2C

Glutamine 40
Metabolism

ALDOA,GAPDH,PKM 7.5

Pentose Phosphate 43 6.976744186

Pathway

DUOX1,NOX1,NOX4

(continued on next page)
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Unique_Pathway

Total_Gene_Count_in_Pathway_

Genes_Under_Pathway Upr_Gene_Count

Upr_Genes_Under_Pathway Percentage

Glycolysis

Nucleotide
Synthesis

Mitochondrial
Respiration

Tryptophan/
Kynurenine
Metabolism

TLR Signaling

AMPK

Glucose Transport

DNA Damage
Repair

p53 Pathway

15

38

20

28

59

95

35

83

EGFR,JAK2,AKT1,HMOX1,PTGS2,
WRN

CA9,HIF3A,SEM1,VEGFA, VHL, 1
PSMA3,PSMA7,PSMB1,PSMB10,
PSMB3,PSMC1,PSMD13,PSME2, UBB,

HIF1A

PRDX1, TIGAR, TP63, TXN, TXNRD1, 2
COX14,COX411,COX5A,COX5B,
COX6A1,COX6B1,COX7B,COX7C,
COX8A,G6PD,GPL,NDUFA4,GLS,
GLS2,PRKAA1,RPTOR,MTOR,
PRKABI,PRKAG1,PRKAA2,PRKAB2,
PRKAG2,TP53,AKT1,AKT2,AKT3,
LAMTOR2,LAMTOR4,LAMTORS,
MLSTS,PTEN,RRAGC, YWHAZ
HSPA4,HSPE1,NME1,NME2,RPL23, 1
THBS1,CAD,ENO1,HERC1,NPM1,
ODC1,PPAT,SRM, TFRC,CCNAZ2,

LDHA,MYC, TP53,FASLG,FASN
AKRIC4,APOA1,APOA2,APOA4, 1
APOC2,APOC3,APOM,CYP8BI,
NADK,NADK2,RBP4, TTPA, TTR,
APOE,NT5E,SHMT1,SHMT2,SLC2A1,
SLC2A3,A0X1,FASN,NOS3,PTGS2,
AKT1,ACACA,ACACB,APOB,IDH]1
AR,ASCL1,ATF7,EOMES,FOXP3, 2
HSF1,HSF2,MYBL1,MYCL,MYCN,
NFATS5,NR2F1,RUNX1,RUNX2,SPIB,
SREBF2,TBX21,ZNF100,ZNF136,
ZNF253,ZNF254,ZNF43,ZNF610,
ZNF675,ZNF682,ZNF708, ZNF85,
ZNF91,ZNF93,CLOCK,FOXM1,HIF3A,
HNF4A,IRF1,IRF4,MYB,MYBL2,
PPARG,REST,S0X2,SREBF1,STATI,
STAT3,STAT5A,STAT6, TBP, TP63,
HIF1A,MYC,NFKB2, TP53,NFKBI,
RELA,ATF4,CREB3L3,KMT2A,
KMT2D,KMT2E,NFE2L2
AADAT,ACAA2,ACAT1,ACAT2, 3
ACSF3,ADH1A,ADH1B,ADHIC,
ADH4,ADH6,ADH7,AGXT,AGXT2,
ALDH2,AMDHD1,A0C1,AOC3,A0X]1,
ARG1,ASH1L,ASL,ASNS,ASPA,ASS1,
BHMT,BHMT2,CAD,CPS1,DAO,DDC,
DMGDH,ECHS1,EHHADH, EZH2,FAH,
FAHD1,FOLH1,FTCD,GAD1,GATM,
GCDH,GCLC,GLS,GLS2,GLUD1,GLUL,
GLYAT,GLYCTK,GOT1,GOT2,GPT,
HADH,HDC,HPD,IL411,KMT2A,
KMT2D,KMT2E,KYAT1,KYAT3,
LDHA,LDHB,LDHC,LTA4H,MATIA,
MAT2A,NATSL,NFS1,NOS1,NOS2,
NOS3,NSD1,0AT,0DC1,0GDH,
OGDHL,PAH,PGAM2,PHGDH, PPAT,
PRODH2,PSAT1,PSPH,PYCR1,
PYCR2,PYCR3,RIMKLA,RIMKLB,SDS,
SDSL,SHMT1,SHMT2,SRM,SRR, TH
ASPG,DGLUCY,FOLH1B,GADLI, 1
GLRX,GRIN1,LTC4S,NAALAD2,
PTGES,SERINC1,SERINC2,SERINC3,
SERINC5,ASNS,ASPA,FOLH1,KYATI,
NATSL,0AT,PHGDH,PSAT1,PSPH,
PYCR1,PYCR2,PYCR3,RIMKLA,
RIMKLB,SRR,GLS,GLS2,GLUD]I,
GLUL,GOT1,GOT2,GPT
ACAP2,APOB,ARF5,ARPC4,CD3D, 1
CD3G,EEA1,FOLR1,FOLR3,GAPVD],
NEDDS,PIK3C2A,SLC2A8,SNFS, TF,

TFRC, USP8, VPS28, WASHC4,AP2S1,
CBL,CD4,CHMP2A,CHMP6,COPS6,
EGFR,GPS1,HSPA2,IL2RA,ITCH,
SMAD2,STAM2,UBB,HLA-A,HLA-C,
HLA-E,HRAS,SMAD3, TRAF6
CD19,COL4A1,COL6A1,COL6A3, 2
ITGA1,ITGA11,LAMA4,LAMB1,
LAMC1,MYB, TCL1A, THBS2,ATF4,

CA9 6.666666667
G6PD,YWHAZ 5.263157895
CAD 5

SLC2A1 3.571428571
FOXM1,MYBL2 3.389830508

ASNS,CAD,GAD1 3.157894737

ASNS 2.857142857

SMAD3 2.564102564

EFNA4,YWHAZ 2.409638554

(continued on next page)
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Unique_Pathway

Total_Gene_Count_in_Pathway_

Genes_Under_Pathway Upr_Gene_Count  Upr_Genes_Under_Pathway

Percentage

mTOR

Cell Cycle

MAPK

53

124

74

BAD,CMKLR1,CREB3L3,EFNA4,
FGF1,GYS2,IL2,1L4,IL6,IL7,ITGBI,
ITGB5,PTK2, THBS1, TLR2,BCL2,
BCL2L1,EGFR,FASLG, GSK3B,INSR,
JAK2,MAP2K2,MLST8,PDPK1,PTEN,
RPS6KBI,RPS6KB2,S0S1,5052,
STK11,VEGFA,YWHAZ,CCNDI,
KRAS,MAP2K1,MYC,NFKB1,NRAS,
PIK3CA,PIK3CB,PIK3CD,PIK3R1,
PIK3R2,PIK3R3,PRKAA1,RELA,
RPTOR,HRAS,MAPK1,MTOR,
PRKAA2,TP53,AKT1,AKT2,AKT3,
BRCA1,CSF3R,FLT1,FLT3,G6PC,
GNGI12,IL2RA,NGFR,NOS3,PCK]1,
PCK2,PDGFB,PDGFRB, TLR4
ATF4,CACNAIA,CACNAIE,CACNB4, 1 EFNA4
CACNG2,CACNG3,CACNG?,
CMKLR1,EFNA4,FGF1,MAP3K12,
MAPKSIP1,MAPT,STK3,CD14,FASLG,
FLT1,FLT3,GNG12,MAP2K3,MRAS,
NGFR,PDGFB,PDGFRB,PPM1A,
PRKCG,PTPN5,KRAS,MAP2K1,
MAPK8,NRAS, TP53, TRAF6,HRAS,
MAPK1,AKT1,AKT2,AKT3,BRAF,
EGFR,HSPA2,INSR,MAP2K2,MYC,
MYD88,NFKB1,NFKB2,RELA,
RPS6KA1,5081,50S2, TNF, VEGFA
A2M,ALOX12,ALOX15,ALOX5, 2 SMAD3,YWHAZ
BIRC3,BRAF,CBL,CCL13,CCL19,
CCL4,CCL5,CD27,CD4,CD40LG,
CSF3R,CXCL9,CXCR6,EGFR,FASLG,
FLT1,FLT3,FPR1,GNG12,HMOX1,
IFNG,IL10,IL2,IL21R, IL2RA,IL4,IL6,
IL7,IRF1,IRF4,ITGAM,ITGB1,ITGB2,
ITK,KPNA2,LCK,LTA,LTB,MAP2K3,
NFKB1,NFKB2,NGFR,NOD2,PDGFB,
PDGFRB,PLCG1,PTGS2,PTK2,PTPNG5,
RELA,RPLPO,RPS6KA1,S100A12,
SOD1,S0D2,5081,5052,50X2,
SQSTM1,STAM2,STAT1,STATS3,
STAT5A,STAT6, TALDO1, TBK1, TNF,
TNFRSF17, TNFRSF4,VEGFA,AOX1,
BCL2,BCL2L1,GSK3B,HIF1A,HLA-A,
HLA-C,HLA-DQA1,HLA-DRBI,HLA-E,
HRAS,JAK2,KRAS,LEPR, MAP2K1,
MAPK8,MYC,MYD88,NDC1,NRAS,
NUP205,NUP62,RANBP2,SMAD?3,
TP53, TPR, TRAF6, YWHAZ,AKT1,
AKT2,AKT3,CCND1,CD36,MAPK],
MTOR,NOS2,PIK3CA, PIK3CB,
PIK3CD,PIK3R1,PIK3R2,PIK3R3,
PSMA3,PSMA7,PSMB1,PSMB10,
PSMB3,PSMC1,PSMD13,PSME2
ATP5F1D,ATP5ME,COX14,COX4I1, 1 SLC16A3
COX5A,COX5B,COX6A1,COX6BI,
COX7B,COX7C,COX8A,CS,IDH3A,
IDH3B,IDH3G,ME2,MPC1,MPC2,
NDUFA1,NDUFA11,NDUFA12,
NDUFA13,NDUFA2,NDUFA3,
NDUFA4,NDUFA6,NDUFA7,NDUFBI,
NDUFB10,NDUFB11,NDUFB2,
NDUFB4,NDUFB7,NDUFB8,NDUFS7,
NDUFS8,NRF1,PDK1,PDK2,PDK3,
PDK4,PDP1,PEMT,SLC16A1,
SLC16A3,SLC16A8, TFAM,UQCRI0,
UQCR11,UQCRQ,ATP6VIF,D2HGDH,
FAHD1,FH,IDH2,L.2HGDH,NCOA?2,
NCOR1,0GDH,PDHA1,PPARGCIA,
SDHB,SDHC,S0D2,GLUD1,PRKAB1,
PRKAG1,PRKAA2,PRKAB2,PRKAG2,
LDHA,LDHB,LDHC,SDHA

1.886792453

1.612903226

1.351351351
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Table 2

Top Pathways with Downregulated Genes in CCA. This table lists the top
enriched pathways associated with downregulated genes in cholangiocarcinoma
(CCA). The columns include the pathway name, the total number of genes in the
pathway (Total Gene_Count_in_Pathway), the number of downregulated genes
(Dwnr_Gene_Count) and the percentage of downregulated genes within each
pathway. Key pathways such as epigenetic regulation, transcriptional regula-
tion, and AMPK signaling show the highest proportion of downregulated genes,
indicating their potential role in CCA pathogenesis.

Dwnr_Gene Count  Dwnr_Genes_Under_Pathway Percentage

10 CYP4A11,CYP4A22,ACAT1,ADH1A,ADHI1B, 41.66667
ADHI1C,ADH4,ADH6,ALDH2,EHHADH

10 CYP1A1,CYP1A2,KMO,TDO2,AADAT,CAT, 31.25
ALDH2,ACAT1,AOX1,EHHADH

22 AADAT,ACAT1,ADH1A,ADH1B,ADH1C,ADH4, 23.15789
ADH6,AGXT,ALDH2,AMDHD1,A0X1,CPS1,
DMGDH,EHHADH,FOLH1,FTCD,GATM, GLS2,
GLYAT,HPD,MAT1A,SDS

9 G6PC,PCK1,PCK2,ADH1A,ADH1B,ADHIC, 22.5
ADH4,ADH6,ALDH2

3 OTC,CPS1,GLS2 18.75

5 APOA1,CYP8B1,TTR,AOX1,APOB 17.85714

4 ASPG,FOLH1B,FOLH1,GLS2 11.42857

5 G6PC,GYS2,HNF4A,PCK1,PCK2 10.41667

1 SLC6A12 6.666667

1 RGN 5.263158

4 GYS2,G6PC,PCK1,PCK2 4.819277

1 APOB 3.030303

1 GLS2 2.631579

1 APOB 2.564103

1 CAT 2.325581

1 HNF4A 1.694915

1 AOX1 0.806452

—21.58 kcal/mol, mapped between nucleotides 323-354 of Inc-
SLC6A12-7:5 and 979-1010 of SLC6A12, which was optimal for stable
binding (Figs. 5b, g & S2c). We further validated the expression of
SLC6A12 in the TCGA-CHOL dataset using the UALCAN database
(Chandrashekar et al., 2022) and observed its downregulation in 36
patient samples. Additionally, other cancers such as cervical squamous
cell carcinoma and endocervical adenocarcinoma, glioblastoma, and
lung squamous cell carcinoma also exhibited downregulation of
SLC6A12. Survival analysis revealed that by 2000 days post-diagnosis,
only 2 out of the 36 patients survived (Fig. S3a-S3b). Additionally,
STRING analysis identified interacting partners of the 84 DEMGs, with
genes directly linked to SLC6A12 grouped separately. Apart from this,
we analysed gene interactions using the 84 DEMGs, focusing on
SLC6A12 to identify genes directly associated with its function. To
eliminate weak connections and outliers in the network map, we applied
MCL clustering and observed that SLC6A12 interacted exclusively with
GADL1 in the 12th cluster (Fig. 5¢). The immediate interacting partner of
interest was GAD1. Hence, IntaRNA analysis of the shortlisted IncRNAs
with GAD1 also revealed a strong interaction score. The pair
Inc-SLC6A12-1:3 and GADI showed an interaction energy of
—22.05 kcal/mol, spanning nucleotides 401-547 of Inc-SLC6A12-1:3
and 3005-3150 of GADI near the 3' UTR of the transcripts (Figs. 5d, h &
S2b). Similarly, the interaction between Inc-SLC6A12-7:5 and GADI
exhibited an energy of —18.06 kcal/mol, involving nucleotides 183-213
of Inc-SLC6A12-7:5 and 2405-2432 of GADI1, also near the 3' UTR
(Figs. 5e, h & S2d). This suggests a stable interaction of these IncRNAs
with GAD1. GADI was consistently upregulated, whereas
Inc-SLC6A12-1:3, Inc-SLC6A12-7:5, and SLC6A12 were downregulated
across all analysed samples. This expression pattern was further vali-
dated using the TCGA cholangiocarcinoma dataset, which demonstrated
the same trend across all 35 tumour samples (Fig. 5f). GAD1 was over-
expressed in at least 12 cancers in TCGA and downregulated in 4 cancers
and survival analysis showed less than two patients survived after 2000
days of diagnosis (Fig. S4a-b). As part of our validation, we used IncTAR
to assess the interactions between the shortlisted IncRNAs and their
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target mRNAs. The analysis showed that Ine-SLC6A12-1:3 interacts
with both SLC6A12 (dG = -19.02 kcal/mol) and GAD1 (dG =
-13.50 kcal/mol). Similarly, Ine-SLC6A12-7:5 was found to interact
with SLC6A12 (dG = -11.35kcal/mol) and GAD1 (dG =
-16.51 kcal/mol). These negative dG values suggest that the in-
teractions are thermodynamically favourable and support the regulatory
roles proposed for these IncRNAs (Supplementary file 2).

3.5. interaction analysis of Inc-SLC6A12 variants with key enriched
transcription factors

The DEMGs were used as input for the CiiiDER tool, with the back-
ground set to genes having an 12fc between —0.4 and 0.4. From this
analysis, the top 10 enriched transcription factors, (BATF::JUN, FOSL1,
IRF1, NR2C2, NR4A1, NRL, Rxra, SIX1, THAP1, TWIST1) were identi-
fied, where the transcription factors represented to bind to promoter of
GAD1 and SLC6A12 were THAP1, FOSL1, NR4A1l and IRF1 (Fig. 6a).
These transcription factors were then analysed using catRAPID omics
v2.1 for IncRNA-Transcription factor interaction (Fig. 6b). Inc-
SLC6A12-7:5 exhibited minimal interaction with these transcription
factors (data not included in the paper), suggesting that it is unlikely to
bind to any of them.

The interaction between Inc-SLC6A12-1:3 and IRF1 revealed two
binding sites on Inc-SLC6A12-1:3. The highest interaction propensity of
14.26 was observed in region 2 (nucleotides 501-552 of Inc-
SLC6A12-1:3 and amino acids 226-277 of IRF1). Additionally, in region
1, binding occurred between nucleotides 300-350 of Inc-SLC6A12-1:3,
interacting with the same region of IRF1, with an interaction propensity
of 12.47 (Fig. 6b-d & Table. S1). The interaction matrix revealed that
Inc-SLC6A12-1:3 and NR4A1 exhibited two binding sites on NR4A1,
with interaction propensities of 11.82 and 11.39, respectively. Region 1
(highlighted in red on the 3D protein structure) involved interaction
between nucleotides 501-552 of Inc-SLC6A12-1:3 and amino acids
323-374 of NR4Al. Region 2 (highlighted in lime green on the 3D
protein structure) involved interaction between amino acids 426-477 of
NR4A1 (Fig. 6b-d & Table. S1). The interaction matrix showed that Inc-
SLC6A12-1:3 interacts with THAP1 between nucleotides 501-552 and
amino acids 138-189, with an interaction propensity of 42.94 (Fig. 6b—d
& Table. S1). Additionally, Inc-SLC6A12-1:3 demonstrated the highest
binding affinity with FOSL1, with a peak interaction propensity of
12.47, occurring between nucleotides 501-552 and amino acids
171-222 (Fig. 6b-d & Table. S1).

4. Discussion

The study utilized a dataset comprising 18 normal liver tissue sam-
ples and 16 tumour CCA samples from SRP159264. Its primary aim was
to identify novel IncRNAs in cholangiocarcinoma (CCA) patients that
regulate the expression of key metabolic genes associated with CCA. The
nCounter® Metabolic Pathways Panel was used to annotate 748 meta-
bolic genes in tumour samples. A filtering process, based on a p-value
threshold of less than 0.05, identified 494 significantly expressed
mRNAs. Further, 41 overexpressed mRNAs with L2FC greater than 2 and
43 downregulated mRNAs with an L2FC less than —2. Next, we analysed
the pathways associated with these genes. The upregulated genes were
distributed across 22 enriched cellular metabolic pathways (CMPs),
while the downregulated genes were associated with 17 depleted CMPs.
Eleven pathways exhibited dual regulation, with both upregulated and
downregulated genes.

The top enriched CMPs with upregulated genes included autophagy,
fatty acid synthesis, and the PI3K pathway, all of which play significant
roles in cancer metabolism and have been widely reported in various
malignancies. Autophagy, a crucial mechanism for cellular homeostasis,
has been implicated in cancer progression by regulating metabolic
reprogramming and promoting survival under stress conditions (Pandey
et al, 2021; Xie et al., 2020). Additionally, lipid metabolism and
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Screening Biologically significant IncRNAs from DEMG-Associated Loci

a b
Biologically Significant IncRNAs with P-Value < 0.05 LncRNAs with P-Value < 0.05 and L2fc < -2

i

Inc-APOB-2:2
Inc-APOB-2:1
CPS1-IT1:2
CPS1-T1:1
Inc-G8PC-2:1
Inc-G8PC~1:1
Inc-ADH1A-1:1
Inc-ADH4-3:2
Inc-ADH4-3:3
Inc-SLCBA12-7:1
Inc-SLCBA12-1:7
Inc-SLCBA12-1:8
Inc-SLCBA12-1:3
Inc-SLCBA12-1:5
Inc-SLCBA12-1:4
Inc-ADH1A-2:1
EHHADH-AS1:2
Inc-SLCBA12-7:3
Inc-SLCBA12-7:4
Inc-SLCBA12-7:2
Inc-SLCBA12-7:5
Inc-EHHADH-1:2
Inc-GATM-1:8
HNF4A-AS1E
HNF4A-AS1T
CYP4A22-AS1:3
Inc-APOB-3:1
Inc-FTCD-3:1
Inc-FTCD-3:3
Inc-FTCD-3:2
HNF4A-AS1:17
HNF4A-AS1:3
Inc-RGN-1:1
Inc-FTCD-4:1

c d
LncRNAs with P-Value < 0.05 and L2fc < -2, tTPM < 0.8 LncRNAs with P-Value < 0.05, L2fc < -2, tTPM < 0.8 & cTPM > 0.7

e Lo

Fig. 4. Analysis of IncRNA expression patterns using TPM normalised data. Heatmap Comparison across the Datasets with Filtering Based on Defined Parameters to
Shortlist Upregulated IncRNAs. a. Heatmap showing the expression of IncRNAs with p-value less than 0.05. b. Heatmap showing the expression of IncRNAs, focusing
only on those with a p-value less than 0.05 and 12fc less than —2. c. Heatmap presenting the expression of IncRNAs, with p-value less than 0.05, 12fc less than —2 and
tumour samples TPM value less than 0.8. d. Heatmap presenting the expression of IncRNAs, with p-value less than 0.05, 12fc less than —2, tumour samples TPM value
less than 0.8 and TPM of Normal samples greater than 0.7. (Green denotes low expression and Red denotes high expression).

Inc-SLC6A12-1:3
Inc-SLC6A12-1:5
Inc-SLC8A12-1:4
Inc-SLC6A12-1:6
Inc-SLC6A12-7:1
Inc-SLC8A12-7:3
Inc-SLC6A12-7:4
Inc-SLC6A12-7:2
Inc-EHHADH-1:2
HNF4A-AS1:8
Inc-G6PC-2:1
CPS1-IT1:2
CPS1-IT1:1
HNF4A-AS1:17
HNF4A-AS1:3
Inc-SLC6A12-7:5
Inc-RGN-1:1
Inc-FTCD-4:1

Inc-SLC6A12-7:5

Inc-SLC6A12-1:3

autophagy are intricately linked, where dysregulated lipid homeostasis glucose and lipid metabolism, making it a critical therapeutic target
contributes to tumour growth and therapy resistance (Alizadeh et al., (Han et al., 2024). While these pathways haven’t been studied in CCA,
2023; Xie et al., 2020). Moreover, the PI3K signalling pathway, a key our current findings independently show their enrichment, further
regulator of cancer metabolism, drives tumourigenesis by modulating highlighting their importance in CCA progression. The top depleted
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Fig. 5. Heatmap displaying the Interaction of IncRNA with mRNA across various RNA pairs, highlighting all the possible intermolecular interactions at potential
binding sites. a. Heatmap showing all the possible interactions between Inc-SLC6A12-1:3 and SLC6A12, displaying the binding site and associated binding energy.
(Yellow denotes low interaction and Red denotes high interaction in Heatmaps showing IncRNA-mRNA interactions) b. Heatmap illustrating all the possible in-
teractions between Inc-SLC6A12-1:3 and SLC6A12, based on binding energy scores. c. STRING analysis depicting direct and functional interactions involving
SLC6A12. d. Heatmap showing interaction between Inc-SLC6A12-1:3 and GAD1, showing the binding site and corresponding binding energy. e. Heatmap showing
interaction between Inc-SLC6A12-7:5 and GAD], indicating the binding site and associated binding energy. f. Box and whisker plot showing expression of GAD1I, Inc-
SLC6A12-1:3, Inc-SLC6A12-7:5 and SLC6A12 (Green box represents normal samples and red box represents Tumour samples) in both SRA and TCGA Datasets. P-
values associated with the analysis are presented in the table. g. Schematic representation of the SLC6A12 mRNA and the specific sites where IncRNAs interact with
the SLC6A12 mRNA. The purple arrow represents the protein-coding region of the SLC6A12 transcript. The orange feature denotes the region where Inc-SLC6A12-7:5
binds to SLC6A12, and the red rectangle indicates the region on SLC6A12 where Inc-SLC6A12-1:3 interacts. h. Schematic representation of the GADI mRNA and the
specific sites where IncRNAs interact with the GADI mRNA. The lime green arrow represents the protein-coding region of the GAD1 transcript. The orange feature
shows the region where Inc-SLC6A12-7:5 binds to GAD1, and the red rectangle marks the region on GAD1 where Inc-SLC6A12-1:3 interacts.
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Fig. 6. Interaction of IncRNA with Transcription factors. a. CiiiDER site map showing transcription factors binding sites on GAD1 and SLC6A12 promoter. b.
catRAPID interaction plot showing the region of interaction between Inc-SLC6A12-1:3 and IFR1, NR4A1, THAP1 and FOSL1 transcription factors respectively. c. 3D
protein structure of NR4A1, IFR1, FOSL1 and THAP1 highlighting the region of interaction with the Inc-SLC6A12-1:3. Red denoted Region1 interaction site and Lime
Green is the Region2 interaction site, tinted pastel blue represents the region which do not interact with the IncRNA. d. Bar graph showing the interaction propensity
of Inc-SLC612-1:3 with IRF1, NR4A1, THAP1 and FOSL1.

pathways associated with the downregulated genes included AMPK, contribute to its ability to escape immune surveillance, further sup-
antigen presentation, and glucose transport. Reports suggest that AMPK porting tumour progression (Kallingal et al., 2023; Marsin et al., 2002).
enhances glucose transport by phosphorylating TXNIP and TBC1D1, The downregulation of AMPK observed in our study correlates with the
promoting plasma membrane localisation of GLUT1 and GLUTZ2. This suppression of the glucose transport pathway. In response to this
increases cellular glucose uptake, utilization, and glycolysis by acti- metabolic shift, as observed in our study GABA synthesis and the GABA
vating PFKFB3, which regulates the glycolytic rate-limiting enzyme shunt pathway are upregulated through the overexpression of GAD1 in
PFK1 (Marsin et al., 2002; Wang et al., 2024). The downregulation of CCA, supporting alternative energy production and tumour survival.

AMPK observed in our study correlates with the suppression of the Dual regulation was observed in pathways such as PI3K and glutamine
glucose transport pathway. In response to this metabolic shift, GABA metabolism, indicating a complex regulatory effect, which has also been
synthesis and the GABA shunt pathway are upregulated through the reported in other cancers (The Role of Glutamine Metabolism in
overexpression of GADI in CCA, supporting alternative energy produc- Experimental and Human Intrahepatic Cholangiocarcinoma - University
tion and tumour survival. Similarly, antigen presentation plays a pivotal of Regensburg Publication Server, n.d.). Reactome and DAVID analysis
role in allowing the immune system to recognize and eliminate malig- revealed significant GO terms, such as heme binding and retinol meta-
nant cells. However, cancer cells evade immune detection by down- bolic processes, with pathways related to metabolism, amino acid de-
regulating antigen presentation to immune cells, a phenomenon known rivatives, and cell division showing enrichment These observations have
as immune evasion. The suppression of this pathway in CCA may already been made in several other cancer studies (Hanahan and
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Weinberg, 2011).

IncRNAs overlapping the genomic loci of the shortlisted 84 DEMGs
were systematically screened, and only those meeting the following
selection criteria were included in the analysis: p-value < 0.05, log2 fold
change (L2FC) > 2 or < -2, transcript per million (TPM) values between
0.7 and 0.8 in both normal and tumour samples respectively. Two
IncRNAs, Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5, fulfilled these condi-
tions and were selected for further analysis. LncRNAs function by RNA-
DNA, RNA-RNA and RNA-protein interactions to regulate various
cellular processes. RNA-RNA interactions have been extensively studied
in miRNAs (Afonso-Grunz and Miiller, 2015). Notably, even small and
imperfectly matched regions of nucleotide complementarity can facili-
tate specific interactions, as evidenced by the strong ability of micro-
RNAs to target mRNA using short, imperfect seed sequences selectively
(Cisse et al., 2012; Kumari et al., 2023; Roy et al., 2024). IncRNA also
has a similar ability to bind to mRNA (Sebastian-Delacruz et al., 2021).
We further examined to determine if there is a direct plausible interac-
tion between the IncRNA and mRNA pair using the IntaRNA tool. The
results showed the strongest interaction between nucleotides 283-409
of Inc-SLC6A12-1:3 and the 3’ end of the CDS of SLC6A12, specifically
between nucleotides 2526-2665. On the other hand, Inc-SLC6A12-7:5
displayed a strong interaction with SLC6A12 near 5 end of CDS. The
data indicates that suggest that Inc-SLC6A12-7:5 has the potential to
bind to the 5’ end of SLC6A12, whereas Inc-SLC6A12-1:3 may interact
with its 3’ end. This differential binding further implies that these
IncRNAs could exert distinct regulatory influences on SLC6A12. We
analysed the expression of these IncRNAs about their binding sites on
mRNA and observed a positive correlation, where both the IncRNAs and
SLC6A12 mRNA were downregulated in cancer cells. This suggests that,
in normal cells, the binding of these IncRNAs to the mRNA may enhance
its stability. To further validate this finding, we analysed the expression
of Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5 and SLC6A12 in the
TCGA-CHOL dataset and observed its consistent downregulation across
all 35 patients, reinforcing its potential significance in chol-
angiocarcinoma (CCA).

In addition to analysing mRNAs co-localised with IncRNAs at the
same genomic loci, we explored whether these IncRNAs could poten-
tially interact with other DEMGs located at distant loci. Using STRING
analysis on the 84 DEMGs, we identified GAD1 (GAD67) as a key
interacting partner of SLC6A12/BGT1 at the protein level. Interestingly,
GAD1 mRNA was found to be significantly overexpressed in our dataset.
Given that both SLC6A12/BGT1 and GAD1/GAD67 are linked through
the GABAergic pathway, we hypothesised that GAD1 might also interact
with Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5, suggesting a possible
cross-locus regulatory mechanism mediated by these IncRNAs. Hence,
looked for a possible direct interaction between Inc-SLC6A12-1:3, Inc-
SLC6A12-7:5 and GADI; the result showed that both IncRNAs, Inc-
SLC6A12-1:3 and Inc-SLC6A12-7:5, had a propensity to bind to the
3’UTR region of GADI mRNA. Such IncRNA-mRNA interaction could
either trigger degradation of mRNA or increase stability (Gong and
Magquat, 2011; Kumari et al., 2023; Mercer and Mattick, 2013; Roy et al.,
2024; Sun et al., 2016). A study revealed that FGFR3-AS1 forms a
tail-to-tail complementary pairing with FGFR3 mRNA, protecting its
3'UTR from RNase digestion and stabilising FGFR3 mRNA, thereby
upregulating its expression. These pairing counters miRNA-mediated
degradation of FGFR3 mRNA at its 3'UTR (Sun et al., 2016). Addition-
ally, other evidence also suggests that IncRNAs binding to the 3’UTR can
stabilise mRNAs (Zhang, Wen, 2024). Conversely, another study showed
that Alu elements within IncRNAs partially pair with the 3' UTR of
actively translating mRNAs, forming a double-stranded RNA structure.
This structure is then targeted by Staufen], triggering the degradation of
the mRNA (Gong and Maquat, 2011; Mercer and Mattick, 2013). A
similar observation was made with miR-501, where overexpression of
the pre-miRNA construct led to the production of mature miRNAs,
resulting in a corresponding decrease in RAG1 expression through direct
binding to its 3'UTR. Whereas, inhibition with anti-miRs increased RAG1
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levels (Kumari et al., 2023; Roy et al., 2024). Since this study is purely in
silico, experimental validation falls beyond its scope. However, we have
inferred the potential mechanisms of action of Inc-SLC6A12-1:3 and
Inc-SLC6A12-7:5 through indirect speculation. These findings provide a
basis for future experimental studies to further investigate their func-
tional roles. We speculate that Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5
might be involved in triggering the degradation of GADI mRNA by
binding to the 3’UTR in the nucleus, as the expression of IncRNA and
mRNA is negatively correlated. Binding of IncRNA to the 3’ UTR of
mRNA can also inhibit translation by disrupting the interaction with the
5’ cap. This was shown in a study where overexpression of LncRNA 7SL
hindered the translation of the tumour suppressor P53. The IncRNA
interacted with the 3' UTR of P53’s mRNA, preventing HuR from binding
and thereby blocking translation (Abdelmohsen et al., 2014; Song et al.,
2021). Similarly, Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5 interact with
the 3’ UTR of GADI, potentially contributing to translational repression
in normal cells. This mechanism may help regulate GABA levels at both
transcriptional and translational levels. To further validate this finding,
we analysed GAD1 expression in the TCGA-CHOL dataset and found it to
be overexpressed in all 36 patients, reinforcing its significance in chol-
angiocarcinoma (CCA) as highlighted in this study.

In addition to their regulatory roles through mRNA binding, IncRNAs
are capable of interacting with proteins such as transcription factors,
potentially modulating their activity and function. Hung et al. demon-
strated that IncRNA PANDA interacts with NF-YA to suppress apoptosis-
related gene expression, while IncRNA PVT1 inhibits MYC phosphory-
lation and degradation, whereas rhabdomyosarcoma 2-associated tran-
scripts (RMST) facilitate SOX2 binding to neurogenic transcription
factor promoters, acting as its transcriptional coregulator (Hung et al.,
2011; Longetal., 2017; Ng et al., 2013; Tseng et al., 2014). Therefore, to
investigate whether these IncRNAs can bind to transcription factors and,
if so, to understand the mechanism of action through which they exert
their effects, we selected the top 10 enriched transcription factors using
the CiiiDER tool which revealed that the transcription factors THAP1,
NR4A1, and IRF1 play crucial roles in regulating the gene expression of
both GADI and SLC6A12 by binding to its promoters. Whereas, FOSL1
exclusively binds to the SLC6AI12 promoter (Fig. 6a). Using the
catRAPID platform, Inc-SLC6A12-1:3 was predicted to strongly interact
with the transcription factors THAP1, NR4A1, IRF1, and FOSL1, with
several of them targeting overlapping regions, indicating possible
competition for binding. Notably, one region of the IncRNA appears to
bind both IRF1 and the SLC6A12 mRNA, suggesting a functional over-
lap. While the IncRNA may still interact with the mRNA through a
partially non-overlapping segment, IRF1 seems to require the entire
stretch for binding. In contrast, Inc-SLC6A12-7:5 showed minimal or no
interaction with the tested transcription factors.

Following the identification of potential IncRNA-transcription factor
interactions, we aimed to assess whether the IncRNA binding sites on
these transcription factors are accessible for interaction or structurally
constrained due to stable secondary structure formation. Additionally,
we sought to determine whether such interactions might influence the
functional activity of the transcription factors, either by activating or
repressing their function based on the binding region on the protein. The
IncRNA and transcription factor interaction might lead to two different
fates, where Inc-SLC6A12-1:3 may either recruit transcription factors to
the promoters of GADI and SLC6A12 or inactivate them. To investigate
IncRNA-transcription factor (TF) interactions, we analysed their binding
at the 3D protein level to determine whether the IncRNA binds within
key functional domains of the transcription factors. Binding within a
functional domain is likely to disrupt or modify the transcription factor’s
function. supporting this hypothesis, studies have shown that GAS5
binds to the DNA-binding domain (DBD) of the glucocorticoid receptor
(GR) and inhibits GR-induced transcriptional activity (Kino et al., 2010).
While binding outside the functional domain may facilitate TF recruit-
ment to target genes. Additionally, if the IncRNA interaction sites for
mRNA and TF are distinct, it could act as both a cis and trans regulator
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simultaneously, modulating gene expression through multiple mecha-
nisms. The results showed that Inc-SLC6A12-1:3 interacts with the
disordered regions of IRF1 and FOSL1 (Fig. 6c¢), suggesting that
Inc-SLC6A12-1:3 binding may play a role in recruiting these transcrip-
tion factors rather than inhibiting their function. Also, the propensity for
interaction with the SLC6A12 promoter is higher than the GADI pro-
moter. This is because the SLC6A12 promoter contains two binding sites
for each of these transcription factors, whereas the GAD1 promoter has
only one IRF1 binding site and no FOSL1 binding site (Fig. 6a). This
supports the observation that SLC6A12 mRNA is downregulated when
Inc-SLC6A12-1:3 levels are reduced in CCA, indicating a potential reg-
ulatory role of the IncRNA in maintaining SLC6A12 expression.
Whereas, GADI expression requires either of THAP1 or NR4A1 tran-
scription factors binding to its promoter (Fig. 6a), THAP1 has highly
conserved zinc finger domain at its N-terminal region facilitating DNA
binding, while the coiled-coil domain (amino acids 139-190) is at its
C-terminal region (Richter et al., 2017). The catRAPID data suggests that
Inc-SLC6A12-1:3 interacts with the C-terminal coiled-coil domain of
THAP1 between 138 and 189 amino acids (Fig. 6¢). Hence, this inter-
action may decrease THAP1 activity in normal cells. Whereas in CCA, as
the IncRNA is downregulated, the activity of THAP1 is restored, hence
the GAD1 is overexpressed. In case of NR4A1 (TR3), Inc-SLC6A12-1:3
interacts with it between amino acids 323-477, a region where four
known domains are associated with it, namely RXRa binding domain,
NGFI-B response element (NBRE) - containing DNA, the nuclear receptor
C4-type (NR C4) and the nuclear receptor ligand-binding domain (NR
LBD) (UNIProt P22736_NR4A1_ HUMAN). Www.Uniprot.Org. Retrieved
January 30, 2025, from Https://Www.Uniprot.Org/Un
iprotkb/P22736/Entry#family_and_domains, n.d.; Zhao et al., 2007).
This interaction suggests that Inc-SLC6A12-1:3 binding shows
decreased activity of NR4Al due to the masking of all the above four
domains in a normal cell. Whereas in CCA, as the Inc-SLC6A12-1:3 is
downregulated, the activity of NR4A1 is restored, hence the GAD1 is
overexpressed, which is similar to the interaction with IncRNA and
THAP1. Using integrative analyses from CiiiDER (for promoter TF
enrichment), catRAPID (for IncRNA-protein interaction predictions),
and Protein3D structural modelling, we reveal that Inc-SLC6A12-1:3
and Inc-SLC6A12-7:5 regulate the balance of SLC6A12 and GAD1
expression by binding to key transcription factors (IRF1, FOSL1, THAP1,
NR4A1), where they promote SLC6A12 expression by recruiting acti-
vating TFs to its promoter and suppress GAD1 expression by inhibiting
repressive TF activity, thereby maintaining normal GABA metabo-
lism—a balance that is lost when these IncRNAs are downregulated in
cancer.

A key strength of this study is its integrative approach, combining
differential expression analysis with interaction prediction to identify
novel IncRNAs linked to cholangiocarcinoma. By focusing on those
associated with metabolic genes, we explore an underexamined aspect
of CCA—metabolic reprogramming. The predicted IncRNA-mRNA and
IncRNA-transcription factor interactions offer mechanistic insights and
provide a strong foundation for future functional validation. While this
study is based on in silico analysis of bulk RNA-seq data, we addressed
this limitation by using strict expression criteria and high-stringency
filters to reduce false positives. The selected IncRNAs and their inter-
acting mRNAs showed consistent expression patterns across all CCA
patients, adding confidence to our findings. Still, experimental valida-
tion through single-cell and functional studies will be important to
confirm their roles.

In summary, based on these results, we speculate that in normal cells,
Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5 regulate the expression of
SLC6A12 and GAD1 through multiple interactions. Lnc-SLC6A12-1:3
binds to SLC6A12 in cis and GADI in trans while also interacting with
transcription factors IRF1, THAP1, NR4A1 and FOSL1, with IRF1 having
the highest binding affinity. Lnc-SLC6A12-1:3 recruits IRF1 and FOSL1
to the promoter of SLC6A12, enhancing its expression, while binding to
THAP1 and NR4A1 reduces their activity, keeping GAD1 levels in check.
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Additionally, Inc-SLC6A12-1:3 binds to the 3° CDS and Inc-
SLC6A12-7:5 to the 5’ CDS of SLC6A12, potentially increasing mRNA
stability (indicated by green circles). Conversely, their binding to the 3’
UTR of GAD1 decreases its stability (purple circles) (Fig. 7). This regu-
lation ensures that SLC6A12 expression remains slightly higher and
GAD1 expression lower in normal cells, maintaining lower GABA levels.
SLC6A12/BGT1 imports extracellular GABA, to prevent silencing of the
immune system and thus prevent tumour microenvironment formation.
In cancer cells, both Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5 are down-
regulated. This leads to unchecked GAD1/GAD67 expression and
elevated GABA synthesis, meeting the high energy demands of cancer
cells. At the same time, reduced SLC6A12 levels decrease GABA import,
fostering the tumour microenvironment. This shift highlights the con-
trasting roles of these IncRNAs in normal and cancer cell GABA meta-
bolism and their impact on tumour progression (Fig. 7).

5. Conclusion

A major strength of this study lies in the novel identification of two
previously uncharacterized long non-coding RNAs, Inc-SLC6A12-1:3
and Inc-SLC6A12-7:5, as potential upstream regulators of GAD1 and
SLC6A12, respectively. These findings suggest a role for these IncRNAs
in modulating the GABAergic pathway to meet the elevated energy
demands observed in cholangiocarcinoma (CCA). While these insights
are based on robust computational analyses, future experimental vali-
dation is crucial to confirm these predicted IncRNA-mRNA interactions.

Therapeutic targeting of SLC6A12 may be challenging, as it plays a
complex role in cancer metabolism regardless of its expression levels.
When overexpressed, SLC6A12 facilitates GABA import into tumour
cells, fueling the GABA shunt to meet energy needs. Conversely, when
downregulated, extracellular GABA accumulates and may aid tumour
progression through microenvironmental modulation—though direct
evidence in CCA remains limited.

In contrast, GAD1 presents a more compelling therapeutic target. Its
inhibition can directly block intracellular GABA synthesis, disrupting
the GABA shunt and impairing energy supply to tumour cells. Moreover,
reduced GABA levels in the tumour microenvironment could diminish
invasion, migration, and immune evasion. GAD1 has also been impli-
cated as a hub gene associated with drug resistance, clinicopathological
features, and immune microenvironment in prostate cancer (Wan et al.,
2023)While L-Allylglycine is known to inhibit GAD after biotransfor-
mation into 2-keto-4-pentenoic acid via stereospecific amino acid oxi-
dase (Abshire et al., 1988). Its clinical use is limited by safety concerns,
including seizure induction in animal models (Thomas and Yang, 1991).
Hence, there is a need for safer, specific GAD1 inhibitors.

Restoration of Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5 expression
represents an innovative therapeutic strategy. Technologies such as
CRISPR activation (CRISPRa) can selectively enhance their transcrip-
tion, while synthetic IncRNA mimics could be employed to rescue their
function. These approaches offer promising avenues to re-establish the
regulatory roles of these IncRNAs and counteract their dysregulation in
CCA.

Overall, this study contributes new insights into the regulatory
landscape of the GABAergic pathway in cholangiocarcinoma, identi-
fying Inc-SLC6A12-1:3, Inc-SLC6A12-7:5, and GAD1 as promising can-
didates for future therapeutic development.
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Fig. 7. The illustration depicts the regulatory roles of Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5 in modulating SLC6A12 and GAD1 expression in normal and cancer
cells. In normal cells, Inc-SLC6A12-1:3 recruits transcription factors (IRF1 and FOSL1) to the promoter of SLC6A12, enhancing its expression, while binding to
THAP1 and NR4A1 reduces their activity, keeping GADI levels low. The binding of Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5 to specific mRNA regions increases
SLC6A12 stability (indicated by green circles) and decreases GAD1 stability (purple circles). This regulation maintains low GABA synthesis while allowing GABA
import via SLC6A12, preventing tumour microenvironment formation. In cancer cells, the downregulation of both IncRNAs disrupts this balance, resulting in
increased GADI1 expression and elevated GABA synthesis to meet tumour energy demands. Concurrently, reduced SLC6A12 levels limit GABA import, promoting
tumour microenvironment development. These findings highlight the contrasting regulatory roles of Inc-SLC6A12-1:3 and Inc-SLC6A12-7:5 in normal and can-

cer cells.
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