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A B S T R A C T

Cholangiocarcinoma (CCA) is an aggressive bile duct malignancy with a poor prognosis and limited treatment 
options. Recent studies highlight the role of metabolic and signalling pathways in tumour progression and 
resistance, including neurotransmitter-related pathways like gamma-aminobutyric acid (GABA). Key GABA- 
associated genes, such as Solute Carrier Family 6 Member 12 (SLC6A12), a GABA transporter and Glutamate 
Decarboxylase 1 (GAD1) involved in GABA synthesis, are implicated in cancer but remain poorly understood in 
CCA. This study aims to identify novel long non-coding RNAs (lncRNAs) specifically associated with chol
angiocarcinoma (CCA) and to explore their potential mechanisms of action. By integrating transcriptomic data 
and interaction prediction tools, we focus on lncRNAs that are linked to key differentially expressed metabolic 
genes, thereby uncovering their possible roles in the metabolic reprogramming of CCA. Using RNA-Seq data from 
the Sequence Read Archive (SRA), differential expression analysis identified 84 differentially expressed meta
bolic genes (DEMGs) associated with metabolic pathways. Gene ontology and pathway analyses using DAVID 
and Reactome database revealed pathway enrichment due to DEGs, while protein interaction using STRING, 
functionally connected SLC6A12/BGT1 and GAD1/GAD67. Two novel downregulated long non-coding RNAs 
(lncRNAs), lnc-SLC6A12–1:3 and lnc-SLC6A12–7:5, were identified based on expression correlations and 
genomic proximity to SLC6A12 and GAD1 genes. Interaction predictions using IntaRNA and lncTAR tools sug
gested lncRNA-mRNA interactions between the lncRNAs and mRNAs (SLC6A12 and GAD1). Transcription factor 
(TF) enrichment analysis using the CiiiDER tool and RNA-protein interaction predictions with the catRAPID tool 
revealed lnc-SLC6A12–1:3 functions as a regulatory scaffold, influencing the transcription of SLC6A12 and GAD1 
by recruiting TFs such as IRF1, THAP1, FOSL1, and NR4A1. Whereas lnc-SLC6A12–7:5 did not show strong 
binding to TFs. In Ideal conditions, lnc-SLC6A12–1:3 enhances SLC6A12 expression by promoting IRF1 and 
FOSL1 activity but antagonises THAP1 and NR4A1, leading to the checked expression of GAD1. These in
teractions highlight a complex regulatory network where lnc-SLC6A12–1:3 and lnc-SLC6A12–7:5 differentially 
modulate transcription factor activity, balancing the expression of these key genes in CCA. For the first time, this 
in silico study reveals that two novel long non-coding RNAs, lnc-SLC6A12–1:3 and lnc-SLC6A12–7:5, regulate the 
expression of SLC6A12 and GAD1 through cis and trans binding interactions, respectively. Based on these in
teractions, we hypothesise that these lncRNAs may contribute to the modulation of the GABAergic pathway, 
which plays a crucial role in fulfilling the high energy demands of cholangiocarcinoma cells. Further experi
mental validation and investigation into the regulation of SLC6A12 and GAD1 are required to gain deeper in
sights into CCA pathogenesis and to identify potential therapeutic targets.

1. Introduction

Cholangiocarcinoma (CCA) is an aggressive malignancy originating 

from the biliary epithelium, constitutes 15 % of primary liver cancers 
and 3 % of gastrointestinal malignancies (Elgenidy et al., 2022). CCA is 
classified anatomically into intrahepatic (iCCA), perihilar (pCCA), and 
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distal (dCCA) subtypes. While pCCA is the most prevalent, accounting 
for 50–60 % of CCAs. It is the second most common primary liver cancer 
after hepatocellular carcinoma. In the United States, bile duct cancer is 
relatively rare, with about 8000 new cases diagnosed annually 
(Statistics About Bile Duct Cancer | Cholangiocarcinoma Stats | Amer
ican Cancer Society, n.d.). The incidence of CCA has been increasing 
globally, with notable rises in both intrahepatic and extrahepatic forms 
(Patel, 2002). However, the actual number may be higher due to diag
nostic challenges. Mortality rates have also shown an upward trend; for 
instance, in Europe, the age-standardised mortality rate rose from 2.6 
per 100,000 in 2001–4.7 per 100,000 in 2017 (Genus et al., 2019). 
Despite advancements in medical science, the prognosis for CCA remains 
poor, with a five-year survival rate of less than 10 % for most patients 
(Elgenidy et al., 2022). The global incidence and mortality of CCA are 
increasing, with a 5-year survival rate of 7–20 % and poor outcomes due 
to late-stage diagnosis and limited therapeutic options. iCCA is highly 
aggressive and characterised by an abundant tumour microenvironment 
(Banales et al., 2020; Louis et al., 2020; Sulpice et al., 2013, 2016). This 
study aims to identify novel lncRNAs associated with CCA by focusing 
on those linked to differentially expressed metabolic genes. We further 
investigate their potential mechanisms of action, such as interactions 
with transcription factors and mRNAs, to provide insights into their 
regulatory roles in CCA progression.

Gamma-aminobutyric acid (GABA) is a key component of the tumour 
microenvironment, and it also plays a central role in the GABA shunt 
pathway in cancer. This pathway facilitates the conversion of α-keto
glutarate, generated in the TCA cycle, into succinate via the in
termediates glutamate, GABA, and succinic semialdehyde (Balázs et al., 
1970; Sarasa et al., 2020), with succinic semialdehyde being oxidised to 
succinate by succinic semialdehyde dehydrogenase (SSADH), which 
then re-enters the TCA cycle (Samborska et al., 2021; Struys et al., 
2005). This GABA shunt pathway is utilised by cancer cells for its high 
energy requirement. When GABA is secreted into the extracellular space, 
it acts as a neurotransmitter in Neuron–Glia Interactions (Vélez-Fort 
et al., 2011), whereas in cancer, it is involved in tumour progression, 
invasion and immune evasion (Huang et al., 2022; Li et al., 2023). GABA 
synthesis is regulated by two isoforms of glutamate decarboxylase 
(GAD): GAD2/GAD65 and GAD1/GAD67. While GAD65 primarily fa
cilitates GABAergic synaptic transmission and plasticity, GAD67 is 
responsible for metabolic GABA production (Lange et al., 2014; Li et al., 
2023). GAT1, SLC6A13/GAT2, GAT3, and SLC6A12/BGT1 are involved 
in regulating GABA levels, with GAT1, SLC6A13, and GAT3 primarily 
responsible for GABA reuptake in the brain, while SLC6A12 not only 
participates in GABA transport but also helps maintain osmotic balance 
and regulates betaine levels in the brain, kidney, and liver highlighting 
its broader roles (Bhatt et al., 2023; Kempson et al., 2014). Glutamate 
decarboxylase 1 (GAD1) is an enzyme that catalyses the conversion of 
glutamate to GABA. GAD activity is increased in certain types of human 
tumours such as colon, gastric, ovarian, and breast cancers (Young and 
Bordey, 2009). Studies have linked the GABAergic system to neoplastic 
processes, with increased GABA content and GAD activity observed in 
colon and breast cancer tissues. In a study, GABA content and GAD ac
tivity were significantly elevated in neoplastic tissue compared to the 
unaffected stomach tissue (Matuszek et al., 2001). Increased GABA 
levels and GAD activity were found in human colon cancer tissue 
compared to normal colon tissue from the same patients. Comparable 
findings were observed in athymic mice transplanted with human colon 
adenocarcinoma cells, where increased levels of GABA and GAD activity 
were detected in growing tumours compared to unaffected tissues. 
Notably, GAD activity was also markedly higher in the unaffected colon 
tissue adjacent to tumours in tumour-bearing mice compared to healthy 
control mice, while GABA levels were normal in the skin tissue, which is 
away from the tumour of experimental mice. These findings suggest that 
altered GABA metabolism may reflect a local immune response to can
cer, and targeting the GABAergic system could offer therapeutic po
tential (Kleinrok et al., 1998). Elevated GABA levels and GAD activity in 

tumour tissue compared to normal mammary tissue in both humans and 
mice, with a positive correlation between the two. This increase may 
indicate a local immune response or tumour hypoxia (Mazurkiewicz 
et al., 1999). Many differentially expressed genes (DEGs) related to the 
tumour microenvironment (TME) were identified, primarily enriched in 
immune-related processes and pathways. Among these, GAD1 was 
developed to predict cholangiocarcinoma (CCA) prognosis (Cao et al., 
2021). Although direct evidence of GABA in CCA is scarce, the 
involvement of GAD1 and SLC6A12 in GABA synthesis suggests a po
tential role in modulating the tumour microenvironment and involve
ment of GABA in the GABA shunt pathway for increased energy 
demands in CCA.

Investigating the regulation of GAD1 and the SLC6A12 in CCA could 
uncover potential novel therapeutic targets, highlighting the critical role 
of the GABAergic system in cancer progression. Although no known 
interactions have been reported involving the long non-coding RNAs 
(lnc-SLC6A12–1:3 and lnc-SLC6A12–7:5), which regulate the genes 
involved in GABA synthesis (GAD1) and GABA transport (SLC6A12), this 
study seeks to establish a potential link among them by focusing on both 
lncRNA-mRNA interaction and lncRNA-protein interaction.

2. Materials and methods

2.1. Retrieval and processing of RNA-seq data

To investigate novel lncRNAs in Cholangiocarcinoma (CCA) patients, 
the dataset comprising 18 samples from adjacent non-tumour/normal 
liver tissues and 16 tumour samples was retrieved from SRP159264 
available in the Sequence Read Archive (SRA) database (Katz et al., 
2022).

Raw RNA-Seq data were downloaded as Fastq files using the function 
“fastq-dump— split-files”. Quality check was assessed using FastQC. 
HISAT2 aligner was used to trim and align the reads to the human hg38 
reference genome (Andrews, 2010). and were further compressed, sor
ted, and indexed using SAMtools (Desai et al., 2022; Kumari et al., 
2021). The "flagstat" function within SAMtools was used to evaluate the 
quality of aligned files. The "coveragebed" function from the BEDTools 
suite was used to obtain the data matrix file (Quinlan and Hall, 2010). 
The BED file containing long non-coding RNA (lncRNA) and mRNA data 
was obtained from the LNCipedia database and UCSC Table Browser, 
respectively (Karolchik et al., 2004; Volders et al., 2013). To analyse the 
differential expression of the global transcriptome, we performed sta
tistical evaluations on the read count files using the DESeq2 package in 
RStudio (Love et al., 2014). Additionally, the read counts were nor
malised to transcripts per million (TPM) to ensure comparability across 
samples and improve the accuracy of downstream analyses (Fig. 1). 
Validation was performed using the TCGA-CHOL dataset, which in
cludes 9 normal and 35 primary tumour patient samples.

2.2. Global transcriptome analysis using DeSeq2 and metabolic pathway 
filtering

For a comprehensive understanding of the differential expression of 
the global transcriptome, we applied statistical analysis using the 
DESeq2 package to the read counts files (Love et al., 2014). The results 
from DESeq2 were integrated with the TPM data frame using gene 
symbols as the common key. To compute fold change (FC) for each 
tumour sample, the TPM value of the tumour samples was divided by the 
geometric mean of TPM values from normal samples. The resulting FC 
values were then log2 transformed to derive log2 fold change (l2fc) 
values. To shortlist mRNAs, we utilised 748 metabolic functional gene 
annotations from the nCounter® Metabolic Pathways Panel. This panel 
encompasses key pathways and processes essential for defining cellular 
metabolism. These 748 genes are then further filtered, where statisti
cally significant mRNAs were filtered based on the DESeq2 data and 
mRNAs with a p-value greater than 0.05 were excluded. Differentially 
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expressed metabolic genes (DEMGs) were identified based on l2fc 
thresholds, greater than 2 or less than − 2, for each tumour sample. 
Detailed computational and statistical protocols are available in the 
accompanying R script (Supplementary file 1)

2.3. Functional enrichment and pathway analysis using DAVID and 
reactome databases

The identified gene list was analysed using the DAVID database by 
employing the "Functional Annotation Clustering" function with default 
parameters (Dennis et al., 2003). The output was saved in a TSV format 
and imported into R using “read.csv”. R libraries such as ggplot2, dplyr, 
and ggrepel were utilised for data processing and visualisation. The 
results were sorted by false discovery rate (FDR). From the ranked data, 
the top 10 entries were selected, focusing on Gene Ontology (GO) an
notations, including GO Biological Processes (GO_BP), Cellular Com
ponents (GO_CC), and Molecular Functions (GO_MF). The Reactome 
Database was used to get the metabolic pathway Annotations, and the 
default parameters were used (Milacic et al., 2024). These annotations 
were visualised in a bubble plot generated using ggplot2, which dis
played the relationship between rank, -log10(FDR), gene size, and 
process labels. This visualisation provided an intuitive overview of the 
enriched functional categories and their statistical significance, aiding in 
the interpretation of the underlying biological processes.

2.4. Screening differentially expressed lncRNAs based on genomic Loci 
and expression pattern correlation

LncRNAs were considered relevant and shortlisted if they were 

located within the same genomic region as the shortlisted mRNAs of 
interest by showing a significant positive or negative correlation with p- 
value < 0.05 and an L2FC greater than 2 or less than − 2. This 
comprehensive approach enhances the accuracy of identifying differ
entially expressed lncRNAs that may have functional roles related to the 
regulation of protein-coding genes. Detailed steps can be found in the R 
script provided as Supplementary file 1.

2.5. lncRNA-mRNA interaction

RNA-RNA interactions were predicted using IntaRNA (version 2.0) 
with default parameters (Mann et al., 2017). The RNA sequences were 
retrieved from the UCSC Genome Browser and LNCipedia. IntaRNA was 
locally installed and used to predict RNA-RNA interactions between 
lncSLC6A12_1 and SLC6A12 mRNA using minimum free energy 
(MFE)-based modelling. The analysis was performed with –mode=M, 
specifying mRNA as the target (-t mRNA.fa) and lncRNA as the query (-q 
lncRNA.fa), enforcing a minimum base-pairing constraint of four 
consecutive nucleotides (–seedBP=4). Output files (tMinE, qMinE, and 
pMinE) were generated to extract minimum energy profiles and identify 
high-confidence binding regions, which were further analysed using 
custom R scripts for Heatmap visualisation. As validation, lncTAR was 
applied to the IntaRNA-identified lncRNA–mRNA regions, using a nor
malised ΔG cutoff of zero to confirm interactions.

2.6. lncRNA-protein interaction

To identify enriched transcription factors, the CiiiDER tool was used, 
DEMGs serving as the gene set, while non-differentially expressed 

Fig. 1. RNA-Seq pipeline for analysing differential expression of both lncRNA and mRNA. The schematic outlines the RNA-seq pipeline beginning with quality 
control using FastQC, followed by trimming and alignment of the reads to the reference genome with HISAT2. Read counts are then quantified using feature Counts 
with Samtools and BEDtools. Finally, TPM is used for expression level comparison, and DESeq2 for normalisation and differential expression analysis. The data is then 
analysed and visualised using different statistical and graphical outputs.
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mRNAs with a log2 fold change (L2FC) between − 0.4 and 0.4 were used 
as the background. This approach enabled the identification of the top- 
enriched transcription factor (Gearing et al., 2019). Additionally, 
catRAPID was utilised to analyse lncRNA-transcription factor in
teractions. Protein FASTA sequences were retrieved from UniProt, while 
lncRNA sequences were obtained from LNCipedia. catRAPID was 
executed with default parameters, and the top-ranking interactions be
tween lncRNAs and transcription factors were identified (Armaos et al., 
2021).

2.7. Gene interaction prediction and network visualisation using STRING 
database

The STRING (Search Tool for the Retrieval of Interacting Genes/ 
Proteins) database was utilised to predict interactions among the 
shortlisted genes and visualise their complex networks. For the analysis, 
we used the DEMGs as input and the Markov Cluster Algorithm as a 
scalable unsupervised clustering algorithm for the network graphs with 
an interaction score threshold of > 0.4 (Franceschini et al., 2013).

3. Results

3.1. Screening and differential expression analysis of metabolic genes in 
tumour samples

748 Metabolic functional gene annotations from the nCounter® 
Metabolic Pathways Panel, encompassing core pathways and processes 
critical to cellular metabolism, were utilised to shortlist mRNAs. These 
mRNAs are then filtered based on P-value (< 0.05) where 494 mRNAs 
are found to be significantly expressed (Fig. 2a). The subsequent level 2 
filter revealed "41" mRNAs overexpressed with L2FC values greater than 
2 and "43" mRNAs downregulated with L2FC less than − 2 across all 
analysed tumour samples, accounting to 84 differentially expressed 

metabolic genes (DEMGs) (Fig. 2b).

3.2. Pathway analysis and functional categorisation of differentially 
genes

The DEMGs were categorised based on their roles in cellular meta
bolism as annotated by the nCounter® Metabolic Pathways Panel. 
Upregulated genes are distributed across 22 cellular metabolic pathways 
(CMPs), while downregulated genes are associated with 17 pathways. 
Among these, 11 pathways contain both overexpressed and down
regulated genes (Fig. 3a). The top 10 enriched CMPs include Autophagy, 
Cytokine & Chemokine Signalling, Fatty Acid Synthesis, Cell Type, PI3K, 
Nucleotide Salvage, NF-κB, Amino Acid Transporters, Glutamine Meta
bolism, and the Pentose Phosphate Pathway, with the percentage of 
genes involved ranging from 6.9 % to 30.7 % (Table 1). Conversely, the 
top 10 pathways with downregulated genes include Epigenetic Regu
lation, Transcriptional Regulation, AMPK, Glutamine Metabolism, An
tigen Presentation, Tryptophan/Kynurenine Metabolism, Glucose 
Transport, Internal Reference, Amino Acid Synthesis, and PI3K, with the 
percentage of genes involved ranging from 5.2 % to 41.6 % (Table 2). 
Among these, the PI3K and Glutamine Metabolism pathways exhibit 
both overexpressed and downregulated genes. In the PI3K pathway, 
10.5 % of the genes are upregulated, while 5.2 % are downregulated. 
Similarly, 7.5 % of the genes are upregulated in the Glutamine Meta
bolic pathway, whereas 22.5 % are downregulated, indicating a 
nuanced regulation of these pathways (Tables 1–2).

Network analysis was conducted using the DAVID and Reactome 
databases, with all 84 DEMGs provided as input under default param
eters. In DAVID, only the enrichment of Gene Ontology (GO) annotation 
terms was considered. From the results of both DAVID and Reactome, 
the top 10 pathways meeting the criteria of at least three gene counts per 
pathway and FDR < 0.05 were selected and bubble plots were plotted, 
where the x-axis represents the rank of pathways based on enrichment 

Fig. 2. Metabolic pathway genes expression pattern using TPM normalised data. Heatmap Comparison of genes represented as Metabolic pathway genes with 
filtering based on parameters as defined below. a. Heatmap showing the expression of mRNAs with a p-value less than 0.05. b. Heatmap showing the expression of 
mRNAs, focusing only on those with a p-value less than 0.05 and l2fc greater than 2 and l2fc less than − 2 (Green denotes low expression and Red denotes 
high expression).
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significance, and the y-axis displays the -log10(FDR), indicating the 
statistical significance of the pathways. Each bubble corresponds to a 
specific pathway, with the legend showing the rank, pathway name, and 
associated gene count (Fig. 3b–c).

The most significant GO terms include the heme binding, alcohol 
dehydrogenase (NAD+Activity and retinol metabolic process. Mid-range 
significant pathways include monooxygenase activity, omega- 
hydroxylase P450 pathway, response to starvation, hepatocyte differ
entiation and iron ion binding. Lower-ranked yet statistically relevant 
pathways include the retinoic acid metabolic processes and cell division. 
Cell division and heme binding pathways each involve 9 genes, making 
them the GO terms with the highest gene representation (Fig. 3 b).

Metabolism emerges as the most enriched pathway using the Reac
tome database, involving 57 genes, followed by metabolism of amino 
acids and derivatives and cell cycle, with 22 genes each ranking 1st and 
4th based on FDR value, ethanol oxidation ranks 2nd with 9 genes. Polo- 
like kinase-mediated events, mitotic cell cycle, and FOXO-mediated 
transcription of oxidative stress show Mid-range significance involve
ment, which can be grouped under cell division and stress responses. 
Other pathways, including "Phase I - Functionalization of compounds, 
cell cycle checkpoints and FOXO-mediated transcription," emphasise the 
role of metabolic and regulatory and cell cycle pathways (Fig. 3c).

3.3. Differential expression of LncRNAs in tumour and normal samples

LncRNAs are non-coding RNAs longer than 200 nucleotides. 
LncRNAs transcribed from the same loci as deregulated mRNAs were 
included, identifying 441 lncRNAs, including lncRNA isoforms and 
variants, corresponding to 84 deregulated genes. Among these 441 

lncRNAs, 200 were statistically significant, with a p-value less than 0.05 
(Fig. 4a). None of these 200 lncRNAs were upregulated with a log2 fold 
change (l2fc) greater than 2 but 34 lncRNAs were downregulated l2fc 
< -2 (Fig. 4b). However, 18 lncRNAs were downregulated with an l2fc 
less than − 2, and showed a transcript per million (TPM) value below 0.8 
across all tumour samples (Fig. 4c). Among these 18 lncRNAs, two novel 
lncRNAs (lnc-SLC6A12–1:3 and lnc-SLC6A12–7:5) were expressed with 
a TPM value greater than 0.7 in all normal samples (Fig. 4d). These 
lncRNAs are intronic lncRNAs which are located within the locus of gene 
SLC6A12. And could be involved in the regulation of the gene by the cis- 
acting function of the lncRNA (Gil and Ulitsky, 2019). To confirm this, 
we performed an lncRNA-mRNA interaction study using the IntaRNA 
tool.

3.4. Functional insights into lncRNA-mRNA interactions: stability and 
binding dynamics

lnc-SLC6A12–1:3 is transcribed from the locus overlapping with 
SLC6A12 and lnc-SLC6A12–7:5 corresponding SLC6A13 locus adjacent 
to SLC6A12 on the genome (Fig. S1a-S1c). The analysis of lncRNA- 
mRNA interactions highlights the functional roles of lncRNAs, which 
either suppress gene expression or enhance gene stability. IntaRNA 
analysis revealed distinct minimum interaction energies among the 
lncRNA-mRNA pairs. The pair lnc-SLC6A12–1:3 and SLC6A12 exhibited 
the lowest interaction energy of − 44.34 kcal/mol, indicating the highest 
interaction, occurring between nucleotides 283–409 of lnc- 
SLC6A12–1:3 and 2526–2665 of SLC6A12, signifying a thermodynam
ically favourable and stable binding (Figs. 5a, 5g & S2a). Conversely, the 
pair lnc-SLC6A12–7:5 and SLC6A12 displayed an interaction energy of 

Fig. 3. Deregulated and enriched pathways. a. Venn diagram illustrating the distribution of upregulated, downregulated, and pathways containing both upregulated 
and downregulated genes in CCA. b & c. Bubble plots representing pathway enrichment analysis of DEGs using DAVID and Reactome databases. "Count" denotes the 
number of DEGs enriched in each pathway. The X-axis represents the rank, indicating the number of deregulated genes representing the pathway, while the Y-axis 
shows the -log10(FDR). The number of genes representing deregulated genes is denoted by "#genes". The top 10-ranked pathways are depicted in the plot.
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Table 1 
Top Enriched Pathways with Upregulated Genes in CCA. The table presents the top enriched pathways based on upregulated genes in cholangiocarcinoma (CCA). 
Columns include the pathway name, the total number of genes in the pathway (Total_Gene_Count_in_Pathway), the number of upregulated genes (Upr_Gene_Count) 
and the percentage of upregulated genes within each pathway. Pathways such as autophagy, cytokine & chemokine signaling, and fatty acid synthesis exhibit the 
highest proportion of upregulated genes, highlighting their potential role in CCA progression.

Unique_Pathway Total_Gene_Count_in_Pathway_ Genes_Under_Pathway Upr_Gene_Count Upr_Genes_Under_Pathway Percentage

Autophagy 65 ABL1,BRCA1,BRCA2,BRCC3,BRIP1, 
BUB1,BUB1B,CCNB2,CDCA5,CDCA8, 
CENPA,CLSPN,EXO1,FOXM1,GSK3B, 
GTSE1,HJURP,HSPA2,JAK2,MKI67, 
MYBL2,MYC,NCAPH,NDC1,NPM1, 
NUP205,NUP62,PLK1,POLE,PRIM1, 
PRIM2,PTK6,RAD51,RANBP2,RRM2, 
SEM1,SMAD2,SMAD3,SMAD4,TK1, 
TP53,TPR,TYMS,WRN,YWHAZ, 
CCNA1,CCNA2,CCND1,CDC20, 
KIF2C,MAPK1,PSMA3,PSMA7, 
PSMB1,PSMB10,PSMB3,PSMC1, 
PSMD13,PSME2,SEC13,UBB,UBE2C, 
AKT1,AKT2,AKT3

20 BUB1B,CCNB2,CDCA5,CDCA8, 
CENPA,CLSPN,EXO1,FOXM1,GTSE1, 
MKI67,MYBL2,NCAPH,PLK1,PRIM2, 
SMAD3,TK1,YWHAZ,CDC20,KIF2C, 
UBE2C

30.76923077

Cytokine & 
Chemokine 
Signaling

31 COPS6,DTL,EME1,ERCC6,FANCA, 
FANCD2,FANCI,GPS1,MSH2,PCLAF, 
RAD51AP1,TIMELESS,UBE2T, 
XRCC2,ABL1,BRCA1,BRCA2,BRCC3, 
BRIP1,CLSPN,EXO1,KPNA2,POLE, 
POLR2A,RAD51,WRN,CCNA1, 
CCNA2,MAPK8,TP53,UBB

6 EME1,FANCD2,MSH2,XRCC2,CLSPN, 
EXO1

19.35483871

Fatty Acid 
Synthesis

6 SLC2A1,SLC2A14,SLC2A3,SLC2A5, 
SLC2A6,SLC2A8

1 SLC2A1 16.66666667

Cell Type 20 ABCF1,AGK,COG7,DHX16,DNAJC14, 
EDC3,FCF1,G6PD,MRPS5,NRDE2, 
OAZ1,POLR2A,SAP130,SDHA, 
STK11IP,TBC1D10B,TBP,TLK2,UBB, 
USP39

3 EDC3,G6PD,TBC1D10B 15

PI3K 19 DERA,H6PD,IDNK,PGD,RBKS,RGN, 
RPIA,TKT,ALDOA,ALDOB,GLYCTK, 
PRPS1,TALDO1,FBP1,G6PD,GPI, 
PFKL,PFKM,PGM2

2 ALDOA,G6PD 10.52631579

Nucleotide Salvage 49 AK3,CDK9,CTPS1,GART,GDA,GMPS, 
IMPDH1,IMPDH2,NPR1,NPR2,NT5E, 
PRPS1,RRM1,UMPS,XDH,ADA,ADK, 
AMPD1,AMPD2,AMPD3,APRT,CDA, 
DCK,DGUOK,GMPR,GMPR2,HPRT1, 
NME1,NME2,PGM2,PKLR,PKM,PNP, 
PRIM1,PRIM2,RRM2,TK2,TYMP, 
TYMS,UCK1,UCK2,UCKL1,UPP1, 
UPP2,CAD,POLE,POLR2A,PPAT,TK1

5 PKM,PRIM2,UCK2,CAD,TK1 10.20408163

NF-KB 23 ADA,ADAL,ADK,AMPD1,AMPD2, 
AMPD3,APRT,CDA,DCK,DGUOK, 
GMPR,GMPR2,HPRT1,PNP,PUDP, 
TK2,TYMP,UCK1,UCK2,UCKL1, 
UPP1,UPP2,TK1

2 UCK2,TK1 8.695652174

Amino Acid 
Transporters

36 AP2S1,BTK,CD14,CDC20,CTSA, 
CTSD,CTSL,CTSS,CYBB,HERC1,HLA- 
A,HLA-C,HLA-DQA1,HLA-DRB1,HLA- 
E,ITCH,ITGB5,KEAP1,KIF2C,LAG3, 
LY96,MYD88,PSMA3,PSMA7,PSMB1, 
PSMB10,PSMB3,PSMC1,PSMD13, 
PSME2,SEC13,TLR2,TLR4,UBE2C, 
VHL,CD36

3 CDC20,KIF2C,UBE2C 8.333333333

Glutamine 
Metabolism

40 ALDOA,ALDOB,ENO1,ENO3,GAPDH, 
GAPDHS,GCK,GPI,HK1,HK2,HK3, 
PDHA1,PGK1,PGM2,PKLR,PKM, 
FBP1,G6PC,LDHA,LDHB,LDHC,PCK1, 
PCK2,PFKFB1,PFKL,PFKM,PGAM2, 
ADH1A,ADH1B,ADH1C,ADH4,ADH6, 
ADH7,ALDH2,NDC1,NUP205,NUP62, 
RANBP2,SEC13,TPR

3 ALDOA,GAPDH,PKM 7.5

Pentose Phosphate 
Pathway

43 APOE,ATOX1,CA12,CAT,DUOX1, 
DUOX2,GPX1,GPX4,KRT1,MPO, 
MSRB2,MTF1,NOX1,NOX3,NOX4, 
PEBP1,PRDX5,PRKN,PTGS1, 
SELENOK,SOD3,TXN2,ERCC6,FDX1, 
FDXR,GCLC,IDH1,NDUFA12, 
NDUFA6,NDUFB4,NDUFS8,NQO1, 
PRDX1,SLC7A11,SOD1,ABL1,BCL2, 

3 DUOX1,NOX1,NOX4 6.976744186

(continued on next page)
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Table 1 (continued )

Unique_Pathway Total_Gene_Count_in_Pathway_ Genes_Under_Pathway Upr_Gene_Count Upr_Genes_Under_Pathway Percentage

EGFR,JAK2,AKT1,HMOX1,PTGS2, 
WRN

Glycolysis 15 CA9,HIF3A,SEM1,VEGFA,VHL, 
PSMA3,PSMA7,PSMB1,PSMB10, 
PSMB3,PSMC1,PSMD13,PSME2,UBB, 
HIF1A

1 CA9 6.666666667

Nucleotide 
Synthesis

38 PRDX1,TIGAR,TP63,TXN,TXNRD1, 
COX14,COX4I1,COX5A,COX5B, 
COX6A1,COX6B1,COX7B,COX7C, 
COX8A,G6PD,GPI,NDUFA4,GLS, 
GLS2,PRKAA1,RPTOR,MTOR, 
PRKAB1,PRKAG1,PRKAA2,PRKAB2, 
PRKAG2,TP53,AKT1,AKT2,AKT3, 
LAMTOR2,LAMTOR4,LAMTOR5, 
MLST8,PTEN,RRAGC,YWHAZ

2 G6PD,YWHAZ 5.263157895

Mitochondrial 
Respiration

20 HSPA4,HSPE1,NME1,NME2,RPL23, 
THBS1,CAD,ENO1,HERC1,NPM1, 
ODC1,PPAT,SRM,TFRC,CCNA2, 
LDHA,MYC,TP53,FASLG,FASN

1 CAD 5

Tryptophan/ 
Kynurenine 
Metabolism

28 AKR1C4,APOA1,APOA2,APOA4, 
APOC2,APOC3,APOM,CYP8B1, 
NADK,NADK2,RBP4,TTPA,TTR, 
APOE,NT5E,SHMT1,SHMT2,SLC2A1, 
SLC2A3,AOX1,FASN,NOS3,PTGS2, 
AKT1,ACACA,ACACB,APOB,IDH1

1 SLC2A1 3.571428571

TLR Signaling 59 AR,ASCL1,ATF7,EOMES,FOXP3, 
HSF1,HSF2,MYBL1,MYCL,MYCN, 
NFAT5,NR2F1,RUNX1,RUNX2,SPIB, 
SREBF2,TBX21,ZNF100,ZNF136, 
ZNF253,ZNF254,ZNF43,ZNF610, 
ZNF675,ZNF682,ZNF708,ZNF85, 
ZNF91,ZNF93,CLOCK,FOXM1,HIF3A, 
HNF4A,IRF1,IRF4,MYB,MYBL2, 
PPARG,REST,SOX2,SREBF1,STAT1, 
STAT3,STAT5A,STAT6,TBP,TP63, 
HIF1A,MYC,NFKB2,TP53,NFKB1, 
RELA,ATF4,CREB3L3,KMT2A, 
KMT2D,KMT2E,NFE2L2

2 FOXM1,MYBL2 3.389830508

AMPK 95 AADAT,ACAA2,ACAT1,ACAT2, 
ACSF3,ADH1A,ADH1B,ADH1C, 
ADH4,ADH6,ADH7,AGXT,AGXT2, 
ALDH2,AMDHD1,AOC1,AOC3,AOX1, 
ARG1,ASH1L,ASL,ASNS,ASPA,ASS1, 
BHMT,BHMT2,CAD,CPS1,DAO,DDC, 
DMGDH,ECHS1,EHHADH,EZH2,FAH, 
FAHD1,FOLH1,FTCD,GAD1,GATM, 
GCDH,GCLC,GLS,GLS2,GLUD1,GLUL, 
GLYAT,GLYCTK,GOT1,GOT2,GPT, 
HADH,HDC,HPD,IL4I1,KMT2A, 
KMT2D,KMT2E,KYAT1,KYAT3, 
LDHA,LDHB,LDHC,LTA4H,MAT1A, 
MAT2A,NAT8L,NFS1,NOS1,NOS2, 
NOS3,NSD1,OAT,ODC1,OGDH, 
OGDHL,PAH,PGAM2,PHGDH,PPAT, 
PRODH2,PSAT1,PSPH,PYCR1, 
PYCR2,PYCR3,RIMKLA,RIMKLB,SDS, 
SDSL,SHMT1,SHMT2,SRM,SRR,TH

3 ASNS,CAD,GAD1 3.157894737

Glucose Transport 35 ASPG,DGLUCY,FOLH1B,GADL1, 
GLRX,GRIN1,LTC4S,NAALAD2, 
PTGES,SERINC1,SERINC2,SERINC3, 
SERINC5,ASNS,ASPA,FOLH1,KYAT1, 
NAT8L,OAT,PHGDH,PSAT1,PSPH, 
PYCR1,PYCR2,PYCR3,RIMKLA, 
RIMKLB,SRR,GLS,GLS2,GLUD1, 
GLUL,GOT1,GOT2,GPT

1 ASNS 2.857142857

DNA Damage 
Repair

39 ACAP2,APOB,ARF5,ARPC4,CD3D, 
CD3G,EEA1,FOLR1,FOLR3,GAPVD1, 
NEDD8,PIK3C2A,SLC2A8,SNF8,TF, 
TFRC,USP8,VPS28,WASHC4,AP2S1, 
CBL,CD4,CHMP2A,CHMP6,COPS6, 
EGFR,GPS1,HSPA2,IL2RA,ITCH, 
SMAD2,STAM2,UBB,HLA-A,HLA-C, 
HLA-E,HRAS,SMAD3,TRAF6

1 SMAD3 2.564102564

p53 Pathway 83 CD19,COL4A1,COL6A1,COL6A3, 
ITGA1,ITGA11,LAMA4,LAMB1, 
LAMC1,MYB,TCL1A,THBS2,ATF4, 

2 EFNA4,YWHAZ 2.409638554

(continued on next page)
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Table 1 (continued )

Unique_Pathway Total_Gene_Count_in_Pathway_ Genes_Under_Pathway Upr_Gene_Count Upr_Genes_Under_Pathway Percentage

BAD,CMKLR1,CREB3L3,EFNA4, 
FGF1,GYS2,IL2,IL4,IL6,IL7,ITGB1, 
ITGB5,PTK2,THBS1,TLR2,BCL2, 
BCL2L1,EGFR,FASLG,GSK3B,INSR, 
JAK2,MAP2K2,MLST8,PDPK1,PTEN, 
RPS6KB1,RPS6KB2,SOS1,SOS2, 
STK11,VEGFA,YWHAZ,CCND1, 
KRAS,MAP2K1,MYC,NFKB1,NRAS, 
PIK3CA,PIK3CB,PIK3CD,PIK3R1, 
PIK3R2,PIK3R3,PRKAA1,RELA, 
RPTOR,HRAS,MAPK1,MTOR, 
PRKAA2,TP53,AKT1,AKT2,AKT3, 
BRCA1,CSF3R,FLT1,FLT3,G6PC, 
GNG12,IL2RA,NGFR,NOS3,PCK1, 
PCK2,PDGFB,PDGFRB,TLR4

mTOR 53 ATF4,CACNA1A,CACNA1E,CACNB4, 
CACNG2,CACNG3,CACNG7, 
CMKLR1,EFNA4,FGF1,MAP3K12, 
MAPK8IP1,MAPT,STK3,CD14,FASLG, 
FLT1,FLT3,GNG12,MAP2K3,MRAS, 
NGFR,PDGFB,PDGFRB,PPM1A, 
PRKCG,PTPN5,KRAS,MAP2K1, 
MAPK8,NRAS,TP53,TRAF6,HRAS, 
MAPK1,AKT1,AKT2,AKT3,BRAF, 
EGFR,HSPA2,INSR,MAP2K2,MYC, 
MYD88,NFKB1,NFKB2,RELA, 
RPS6KA1,SOS1,SOS2,TNF,VEGFA

1 EFNA4 1.886792453

Cell Cycle 124 A2M,ALOX12,ALOX15,ALOX5, 
BIRC3,BRAF,CBL,CCL13,CCL19, 
CCL4,CCL5,CD27,CD4,CD40LG, 
CSF3R,CXCL9,CXCR6,EGFR,FASLG, 
FLT1,FLT3,FPR1,GNG12,HMOX1, 
IFNG,IL10,IL2,IL21R,IL2RA,IL4,IL6, 
IL7,IRF1,IRF4,ITGAM,ITGB1,ITGB2, 
ITK,KPNA2,LCK,LTA,LTB,MAP2K3, 
NFKB1,NFKB2,NGFR,NOD2,PDGFB, 
PDGFRB,PLCG1,PTGS2,PTK2,PTPN5, 
RELA,RPLP0,RPS6KA1,S100A12, 
SOD1,SOD2,SOS1,SOS2,SOX2, 
SQSTM1,STAM2,STAT1,STAT3, 
STAT5A,STAT6,TALDO1,TBK1,TNF, 
TNFRSF17,TNFRSF4,VEGFA,AOX1, 
BCL2,BCL2L1,GSK3B,HIF1A,HLA-A, 
HLA-C,HLA-DQA1,HLA-DRB1,HLA-E, 
HRAS,JAK2,KRAS,LEPR,MAP2K1, 
MAPK8,MYC,MYD88,NDC1,NRAS, 
NUP205,NUP62,RANBP2,SMAD3, 
TP53,TPR,TRAF6,YWHAZ,AKT1, 
AKT2,AKT3,CCND1,CD36,MAPK1, 
MTOR,NOS2,PIK3CA,PIK3CB, 
PIK3CD,PIK3R1,PIK3R2,PIK3R3, 
PSMA3,PSMA7,PSMB1,PSMB10, 
PSMB3,PSMC1,PSMD13,PSME2

2 SMAD3,YWHAZ 1.612903226

MAPK 74 ATP5F1D,ATP5ME,COX14,COX4I1, 
COX5A,COX5B,COX6A1,COX6B1, 
COX7B,COX7C,COX8A,CS,IDH3A, 
IDH3B,IDH3G,ME2,MPC1,MPC2, 
NDUFA1,NDUFA11,NDUFA12, 
NDUFA13,NDUFA2,NDUFA3, 
NDUFA4,NDUFA6,NDUFA7,NDUFB1, 
NDUFB10,NDUFB11,NDUFB2, 
NDUFB4,NDUFB7,NDUFB8,NDUFS7, 
NDUFS8,NRF1,PDK1,PDK2,PDK3, 
PDK4,PDP1,PEMT,SLC16A1, 
SLC16A3,SLC16A8,TFAM,UQCR10, 
UQCR11,UQCRQ,ATP6V1F,D2HGDH, 
FAHD1,FH,IDH2,L2HGDH,NCOA2, 
NCOR1,OGDH,PDHA1,PPARGC1A, 
SDHB,SDHC,SOD2,GLUD1,PRKAB1, 
PRKAG1,PRKAA2,PRKAB2,PRKAG2, 
LDHA,LDHB,LDHC,SDHA

1 SLC16A3 1.351351351
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− 21.58 kcal/mol, mapped between nucleotides 323–354 of lnc- 
SLC6A12–7:5 and 979–1010 of SLC6A12, which was optimal for stable 
binding (Figs. 5b, g & S2c). We further validated the expression of 
SLC6A12 in the TCGA-CHOL dataset using the UALCAN database 
(Chandrashekar et al., 2022) and observed its downregulation in 36 
patient samples. Additionally, other cancers such as cervical squamous 
cell carcinoma and endocervical adenocarcinoma, glioblastoma, and 
lung squamous cell carcinoma also exhibited downregulation of 
SLC6A12. Survival analysis revealed that by 2000 days post-diagnosis, 
only 2 out of the 36 patients survived (Fig. S3a-S3b). Additionally, 
STRING analysis identified interacting partners of the 84 DEMGs, with 
genes directly linked to SLC6A12 grouped separately. Apart from this, 
we analysed gene interactions using the 84 DEMGs, focusing on 
SLC6A12 to identify genes directly associated with its function. To 
eliminate weak connections and outliers in the network map, we applied 
MCL clustering and observed that SLC6A12 interacted exclusively with 
GAD1 in the 12th cluster (Fig. 5c). The immediate interacting partner of 
interest was GAD1. Hence, IntaRNA analysis of the shortlisted lncRNAs 
with GAD1 also revealed a strong interaction score. The pair 
lnc-SLC6A12–1:3 and GAD1 showed an interaction energy of 
− 22.05 kcal/mol, spanning nucleotides 401–547 of lnc-SLC6A12–1:3 
and 3005–3150 of GAD1 near the 3′ UTR of the transcripts (Figs. 5d, h & 
S2b). Similarly, the interaction between lnc-SLC6A12–7:5 and GAD1 
exhibited an energy of − 18.06 kcal/mol, involving nucleotides 183–213 
of lnc-SLC6A12–7:5 and 2405–2432 of GAD1, also near the 3′ UTR 
(Figs. 5e, h & S2d). This suggests a stable interaction of these lncRNAs 
with GAD1. GAD1 was consistently upregulated, whereas 
lnc-SLC6A12–1:3, lnc-SLC6A12–7:5, and SLC6A12 were downregulated 
across all analysed samples. This expression pattern was further vali
dated using the TCGA cholangiocarcinoma dataset, which demonstrated 
the same trend across all 35 tumour samples (Fig. 5f). GAD1 was over
expressed in at least 12 cancers in TCGA and downregulated in 4 cancers 
and survival analysis showed less than two patients survived after 2000 
days of diagnosis (Fig. S4a-b). As part of our validation, we used lncTAR 
to assess the interactions between the shortlisted lncRNAs and their 

target mRNAs. The analysis showed that lnc-SLC6A12–1:3 interacts 
with both SLC6A12 (dG = –19.02 kcal/mol) and GAD1 (dG =

–13.50 kcal/mol). Similarly, lnc-SLC6A12–7:5 was found to interact 
with SLC6A12 (dG = –11.35 kcal/mol) and GAD1 (dG =

–16.51 kcal/mol). These negative dG values suggest that the in
teractions are thermodynamically favourable and support the regulatory 
roles proposed for these lncRNAs (Supplementary file 2).

3.5. interaction analysis of lnc-SLC6A12 variants with key enriched 
transcription factors

The DEMGs were used as input for the CiiiDER tool, with the back
ground set to genes having an l2fc between − 0.4 and 0.4. From this 
analysis, the top 10 enriched transcription factors, (BATF::JUN, FOSL1, 
IRF1, NR2C2, NR4A1, NRL, Rxra, SIX1, THAP1, TWIST1) were identi
fied, where the transcription factors represented to bind to promoter of 
GAD1 and SLC6A12 were THAP1, FOSL1, NR4A1 and IRF1 (Fig. 6a). 
These transcription factors were then analysed using catRAPID omics 
v2.1 for lncRNA-Transcription factor interaction (Fig. 6b). lnc- 
SLC6A12–7:5 exhibited minimal interaction with these transcription 
factors (data not included in the paper), suggesting that it is unlikely to 
bind to any of them.

The interaction between lnc-SLC6A12–1:3 and IRF1 revealed two 
binding sites on lnc-SLC6A12–1:3. The highest interaction propensity of 
14.26 was observed in region 2 (nucleotides 501–552 of lnc- 
SLC6A12–1:3 and amino acids 226–277 of IRF1). Additionally, in region 
1, binding occurred between nucleotides 300–350 of lnc-SLC6A12–1:3, 
interacting with the same region of IRF1, with an interaction propensity 
of 12.47 (Fig. 6b-d & Table. S1). The interaction matrix revealed that 
lnc-SLC6A12–1:3 and NR4A1 exhibited two binding sites on NR4A1, 
with interaction propensities of 11.82 and 11.39, respectively. Region 1 
(highlighted in red on the 3D protein structure) involved interaction 
between nucleotides 501–552 of lnc-SLC6A12–1:3 and amino acids 
323–374 of NR4A1. Region 2 (highlighted in lime green on the 3D 
protein structure) involved interaction between amino acids 426–477 of 
NR4A1 (Fig. 6b-d & Table. S1). The interaction matrix showed that lnc- 
SLC6A12–1:3 interacts with THAP1 between nucleotides 501–552 and 
amino acids 138–189, with an interaction propensity of 42.94 (Fig. 6b–d 
& Table. S1). Additionally, lnc-SLC6A12–1:3 demonstrated the highest 
binding affinity with FOSL1, with a peak interaction propensity of 
12.47, occurring between nucleotides 501–552 and amino acids 
171–222 (Fig. 6b-d & Table. S1).

4. Discussion

The study utilized a dataset comprising 18 normal liver tissue sam
ples and 16 tumour CCA samples from SRP159264. Its primary aim was 
to identify novel lncRNAs in cholangiocarcinoma (CCA) patients that 
regulate the expression of key metabolic genes associated with CCA. The 
nCounter® Metabolic Pathways Panel was used to annotate 748 meta
bolic genes in tumour samples. A filtering process, based on a p-value 
threshold of less than 0.05, identified 494 significantly expressed 
mRNAs. Further, 41 overexpressed mRNAs with L2FC greater than 2 and 
43 downregulated mRNAs with an L2FC less than − 2. Next, we analysed 
the pathways associated with these genes. The upregulated genes were 
distributed across 22 enriched cellular metabolic pathways (CMPs), 
while the downregulated genes were associated with 17 depleted CMPs. 
Eleven pathways exhibited dual regulation, with both upregulated and 
downregulated genes.

The top enriched CMPs with upregulated genes included autophagy, 
fatty acid synthesis, and the PI3K pathway, all of which play significant 
roles in cancer metabolism and have been widely reported in various 
malignancies. Autophagy, a crucial mechanism for cellular homeostasis, 
has been implicated in cancer progression by regulating metabolic 
reprogramming and promoting survival under stress conditions (Pandey 
et al., 2021; Xie et al., 2020). Additionally, lipid metabolism and 

Table 2 
Top Pathways with Downregulated Genes in CCA. This table lists the top 
enriched pathways associated with downregulated genes in cholangiocarcinoma 
(CCA). The columns include the pathway name, the total number of genes in the 
pathway (Total_Gene_Count_in_Pathway), the number of downregulated genes 
(Dwnr_Gene_Count) and the percentage of downregulated genes within each 
pathway. Key pathways such as epigenetic regulation, transcriptional regula
tion, and AMPK signaling show the highest proportion of downregulated genes, 
indicating their potential role in CCA pathogenesis.

Dwnr_Gene_Count Dwnr_Genes_Under_Pathway Percentage

10 CYP4A11,CYP4A22,ACAT1,ADH1A,ADH1B, 
ADH1C,ADH4,ADH6,ALDH2,EHHADH

41.66667

10 CYP1A1,CYP1A2,KMO,TDO2,AADAT,CAT, 
ALDH2,ACAT1,AOX1,EHHADH

31.25

22 AADAT,ACAT1,ADH1A,ADH1B,ADH1C,ADH4, 
ADH6,AGXT,ALDH2,AMDHD1,AOX1,CPS1, 
DMGDH,EHHADH,FOLH1,FTCD,GATM,GLS2, 
GLYAT,HPD,MAT1A,SDS

23.15789

9 G6PC,PCK1,PCK2,ADH1A,ADH1B,ADH1C, 
ADH4,ADH6,ALDH2

22.5

3 OTC,CPS1,GLS2 18.75
5 APOA1,CYP8B1,TTR,AOX1,APOB 17.85714
4 ASPG,FOLH1B,FOLH1,GLS2 11.42857
5 G6PC,GYS2,HNF4A,PCK1,PCK2 10.41667
1 SLC6A12 6.666667
1 RGN 5.263158
4 GYS2,G6PC,PCK1,PCK2 4.819277
1 APOB 3.030303
1 GLS2 2.631579
1 APOB 2.564103
1 CAT 2.325581
1 HNF4A 1.694915
1 AOX1 0.806452
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autophagy are intricately linked, where dysregulated lipid homeostasis 
contributes to tumour growth and therapy resistance (Alizadeh et al., 
2023; Xie et al., 2020). Moreover, the PI3K signalling pathway, a key 
regulator of cancer metabolism, drives tumourigenesis by modulating 

glucose and lipid metabolism, making it a critical therapeutic target 
(Han et al., 2024). While these pathways haven’t been studied in CCA, 
our current findings independently show their enrichment, further 
highlighting their importance in CCA progression. The top depleted 

Fig. 4. Analysis of lncRNA expression patterns using TPM normalised data. Heatmap Comparison across the Datasets with Filtering Based on Defined Parameters to 
Shortlist Upregulated lncRNAs. a. Heatmap showing the expression of lncRNAs with p-value less than 0.05. b. Heatmap showing the expression of lncRNAs, focusing 
only on those with a p-value less than 0.05 and l2fc less than − 2. c. Heatmap presenting the expression of lncRNAs, with p-value less than 0.05, l2fc less than − 2 and 
tumour samples TPM value less than 0.8. d. Heatmap presenting the expression of lncRNAs, with p-value less than 0.05, l2fc less than − 2, tumour samples TPM value 
less than 0.8 and TPM of Normal samples greater than 0.7. (Green denotes low expression and Red denotes high expression).
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pathways associated with the downregulated genes included AMPK, 
antigen presentation, and glucose transport. Reports suggest that AMPK 
enhances glucose transport by phosphorylating TXNIP and TBC1D1, 
promoting plasma membrane localisation of GLUT1 and GLUT2. This 
increases cellular glucose uptake, utilization, and glycolysis by acti
vating PFKFB3, which regulates the glycolytic rate-limiting enzyme 
PFK1 (Marsin et al., 2002; Wang et al., 2024). The downregulation of 
AMPK observed in our study correlates with the suppression of the 
glucose transport pathway. In response to this metabolic shift, GABA 
synthesis and the GABA shunt pathway are upregulated through the 
overexpression of GAD1 in CCA, supporting alternative energy produc
tion and tumour survival. Similarly, antigen presentation plays a pivotal 
role in allowing the immune system to recognize and eliminate malig
nant cells. However, cancer cells evade immune detection by down
regulating antigen presentation to immune cells, a phenomenon known 
as immune evasion. The suppression of this pathway in CCA may 

contribute to its ability to escape immune surveillance, further sup
porting tumour progression (Kallingal et al., 2023; Marsin et al., 2002). 
The downregulation of AMPK observed in our study correlates with the 
suppression of the glucose transport pathway. In response to this 
metabolic shift, as observed in our study GABA synthesis and the GABA 
shunt pathway are upregulated through the overexpression of GAD1 in 
CCA, supporting alternative energy production and tumour survival. 
Dual regulation was observed in pathways such as PI3K and glutamine 
metabolism, indicating a complex regulatory effect, which has also been 
reported in other cancers (The Role of Glutamine Metabolism in 
Experimental and Human Intrahepatic Cholangiocarcinoma - University 
of Regensburg Publication Server, n.d.). Reactome and DAVID analysis 
revealed significant GO terms, such as heme binding and retinol meta
bolic processes, with pathways related to metabolism, amino acid de
rivatives, and cell division showing enrichment These observations have 
already been made in several other cancer studies (Hanahan and 

Fig. 5. Heatmap displaying the Interaction of lncRNA with mRNA across various RNA pairs, highlighting all the possible intermolecular interactions at potential 
binding sites. a. Heatmap showing all the possible interactions between lnc-SLC6A12–1:3 and SLC6A12, displaying the binding site and associated binding energy. 
(Yellow denotes low interaction and Red denotes high interaction in Heatmaps showing lncRNA-mRNA interactions) b. Heatmap illustrating all the possible in
teractions between lnc-SLC6A12–1:3 and SLC6A12, based on binding energy scores. c. STRING analysis depicting direct and functional interactions involving 
SLC6A12. d. Heatmap showing interaction between lnc-SLC6A12–1:3 and GAD1, showing the binding site and corresponding binding energy. e. Heatmap showing 
interaction between lnc-SLC6A12–7:5 and GAD1, indicating the binding site and associated binding energy. f. Box and whisker plot showing expression of GAD1, lnc- 
SLC6A12–1:3, lnc-SLC6A12–7:5 and SLC6A12 (Green box represents normal samples and red box represents Tumour samples) in both SRA and TCGA Datasets. P- 
values associated with the analysis are presented in the table. g. Schematic representation of the SLC6A12 mRNA and the specific sites where lncRNAs interact with 
the SLC6A12 mRNA. The purple arrow represents the protein-coding region of the SLC6A12 transcript. The orange feature denotes the region where lnc-SLC6A12–7:5 
binds to SLC6A12, and the red rectangle indicates the region on SLC6A12 where lnc-SLC6A12–1:3 interacts. h. Schematic representation of the GAD1 mRNA and the 
specific sites where lncRNAs interact with the GAD1 mRNA. The lime green arrow represents the protein-coding region of the GAD1 transcript. The orange feature 
shows the region where lnc-SLC6A12–7:5 binds to GAD1, and the red rectangle marks the region on GAD1 where lnc-SLC6A12–1:3 interacts.

Fig. 6. Interaction of lncRNA with Transcription factors. a. CiiiDER site map showing transcription factors binding sites on GAD1 and SLC6A12 promoter. b. 
catRAPID interaction plot showing the region of interaction between lnc-SLC6A12–1:3 and IFR1, NR4A1, THAP1 and FOSL1 transcription factors respectively. c. 3D 
protein structure of NR4A1, IFR1, FOSL1 and THAP1 highlighting the region of interaction with the lnc-SLC6A12–1:3. Red denoted Region1 interaction site and Lime 
Green is the Region2 interaction site, tinted pastel blue represents the region which do not interact with the lncRNA. d. Bar graph showing the interaction propensity 
of lnc-SLC612–1:3 with IRF1, NR4A1, THAP1 and FOSL1.
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Weinberg, 2011).
lncRNAs overlapping the genomic loci of the shortlisted 84 DEMGs 

were systematically screened, and only those meeting the following 
selection criteria were included in the analysis: p-value < 0.05, log2 fold 
change (L2FC) > 2 or < -2, transcript per million (TPM) values between 
0.7 and 0.8 in both normal and tumour samples respectively. Two 
lncRNAs, lnc-SLC6A12–1:3 and lnc-SLC6A12–7:5, fulfilled these condi
tions and were selected for further analysis. LncRNAs function by RNA- 
DNA, RNA-RNA and RNA-protein interactions to regulate various 
cellular processes. RNA-RNA interactions have been extensively studied 
in miRNAs (Afonso-Grunz and Müller, 2015). Notably, even small and 
imperfectly matched regions of nucleotide complementarity can facili
tate specific interactions, as evidenced by the strong ability of micro
RNAs to target mRNA using short, imperfect seed sequences selectively 
(Cisse et al., 2012; Kumari et al., 2023; Roy et al., 2024). lncRNA also 
has a similar ability to bind to mRNA (Sebastian-Delacruz et al., 2021). 
We further examined to determine if there is a direct plausible interac
tion between the lncRNA and mRNA pair using the IntaRNA tool. The 
results showed the strongest interaction between nucleotides 283–409 
of lnc-SLC6A12–1:3 and the 3′ end of the CDS of SLC6A12, specifically 
between nucleotides 2526–2665. On the other hand, lnc-SLC6A12–7:5 
displayed a strong interaction with SLC6A12 near 5’ end of CDS. The 
data indicates that suggest that lnc-SLC6A12–7:5 has the potential to 
bind to the 5′ end of SLC6A12, whereas lnc-SLC6A12–1:3 may interact 
with its 3′ end. This differential binding further implies that these 
lncRNAs could exert distinct regulatory influences on SLC6A12. We 
analysed the expression of these lncRNAs about their binding sites on 
mRNA and observed a positive correlation, where both the lncRNAs and 
SLC6A12 mRNA were downregulated in cancer cells. This suggests that, 
in normal cells, the binding of these lncRNAs to the mRNA may enhance 
its stability. To further validate this finding, we analysed the expression 
of lnc-SLC6A12–1:3 and lnc-SLC6A12–7:5 and SLC6A12 in the 
TCGA-CHOL dataset and observed its consistent downregulation across 
all 35 patients, reinforcing its potential significance in chol
angiocarcinoma (CCA).

In addition to analysing mRNAs co-localised with lncRNAs at the 
same genomic loci, we explored whether these lncRNAs could poten
tially interact with other DEMGs located at distant loci. Using STRING 
analysis on the 84 DEMGs, we identified GAD1 (GAD67) as a key 
interacting partner of SLC6A12/BGT1 at the protein level. Interestingly, 
GAD1 mRNA was found to be significantly overexpressed in our dataset. 
Given that both SLC6A12/BGT1 and GAD1/GAD67 are linked through 
the GABAergic pathway, we hypothesised that GAD1 might also interact 
with lnc-SLC6A12–1:3 and lnc-SLC6A12–7:5, suggesting a possible 
cross-locus regulatory mechanism mediated by these lncRNAs. Hence, 
looked for a possible direct interaction between lnc-SLC6A12–1:3, lnc- 
SLC6A12–7:5 and GAD1; the result showed that both lncRNAs, lnc- 
SLC6A12–1:3 and lnc-SLC6A12–7:5, had a propensity to bind to the 
3’UTR region of GAD1 mRNA. Such lncRNA-mRNA interaction could 
either trigger degradation of mRNA or increase stability (Gong and 
Maquat, 2011; Kumari et al., 2023; Mercer and Mattick, 2013; Roy et al., 
2024; Sun et al., 2016). A study revealed that FGFR3-AS1 forms a 
tail-to-tail complementary pairing with FGFR3 mRNA, protecting its 
3′UTR from RNase digestion and stabilising FGFR3 mRNA, thereby 
upregulating its expression. These pairing counters miRNA-mediated 
degradation of FGFR3 mRNA at its 3′UTR (Sun et al., 2016). Addition
ally, other evidence also suggests that lncRNAs binding to the 3’UTR can 
stabilise mRNAs (Zhang, Wen, 2024). Conversely, another study showed 
that Alu elements within lncRNAs partially pair with the 3′ UTR of 
actively translating mRNAs, forming a double-stranded RNA structure. 
This structure is then targeted by Staufen1, triggering the degradation of 
the mRNA (Gong and Maquat, 2011; Mercer and Mattick, 2013). A 
similar observation was made with miR-501, where overexpression of 
the pre-miRNA construct led to the production of mature miRNAs, 
resulting in a corresponding decrease in RAG1 expression through direct 
binding to its 3′UTR. Whereas, inhibition with anti-miRs increased RAG1 

levels (Kumari et al., 2023; Roy et al., 2024). Since this study is purely in 
silico, experimental validation falls beyond its scope. However, we have 
inferred the potential mechanisms of action of lnc-SLC6A12–1:3 and 
lnc-SLC6A12–7:5 through indirect speculation. These findings provide a 
basis for future experimental studies to further investigate their func
tional roles. We speculate that lnc-SLC6A12–1:3 and lnc-SLC6A12–7:5 
might be involved in triggering the degradation of GAD1 mRNA by 
binding to the 3’UTR in the nucleus, as the expression of lncRNA and 
mRNA is negatively correlated. Binding of lncRNA to the 3’ UTR of 
mRNA can also inhibit translation by disrupting the interaction with the 
5’ cap. This was shown in a study where overexpression of LncRNA 7SL 
hindered the translation of the tumour suppressor P53. The lncRNA 
interacted with the 3′ UTR of P53’s mRNA, preventing HuR from binding 
and thereby blocking translation (Abdelmohsen et al., 2014; Song et al., 
2021). Similarly, lnc-SLC6A12–1:3 and lnc-SLC6A12–7:5 interact with 
the 3’ UTR of GAD1, potentially contributing to translational repression 
in normal cells. This mechanism may help regulate GABA levels at both 
transcriptional and translational levels. To further validate this finding, 
we analysed GAD1 expression in the TCGA-CHOL dataset and found it to 
be overexpressed in all 36 patients, reinforcing its significance in chol
angiocarcinoma (CCA) as highlighted in this study.

In addition to their regulatory roles through mRNA binding, lncRNAs 
are capable of interacting with proteins such as transcription factors, 
potentially modulating their activity and function. Hung et al. demon
strated that lncRNA PANDA interacts with NF-YA to suppress apoptosis- 
related gene expression, while lncRNA PVT1 inhibits MYC phosphory
lation and degradation, whereas rhabdomyosarcoma 2-associated tran
scripts (RMST) facilitate SOX2 binding to neurogenic transcription 
factor promoters, acting as its transcriptional coregulator (Hung et al., 
2011; Long et al., 2017; Ng et al., 2013; Tseng et al., 2014). Therefore, to 
investigate whether these lncRNAs can bind to transcription factors and, 
if so, to understand the mechanism of action through which they exert 
their effects, we selected the top 10 enriched transcription factors using 
the CiiiDER tool which revealed that the transcription factors THAP1, 
NR4A1, and IRF1 play crucial roles in regulating the gene expression of 
both GAD1 and SLC6A12 by binding to its promoters. Whereas, FOSL1 
exclusively binds to the SLC6A12 promoter (Fig. 6a). Using the 
catRAPID platform, lnc-SLC6A12–1:3 was predicted to strongly interact 
with the transcription factors THAP1, NR4A1, IRF1, and FOSL1, with 
several of them targeting overlapping regions, indicating possible 
competition for binding. Notably, one region of the lncRNA appears to 
bind both IRF1 and the SLC6A12 mRNA, suggesting a functional over
lap. While the lncRNA may still interact with the mRNA through a 
partially non-overlapping segment, IRF1 seems to require the entire 
stretch for binding. In contrast, lnc-SLC6A12–7:5 showed minimal or no 
interaction with the tested transcription factors.

Following the identification of potential lncRNA–transcription factor 
interactions, we aimed to assess whether the lncRNA binding sites on 
these transcription factors are accessible for interaction or structurally 
constrained due to stable secondary structure formation. Additionally, 
we sought to determine whether such interactions might influence the 
functional activity of the transcription factors, either by activating or 
repressing their function based on the binding region on the protein. The 
lncRNA and transcription factor interaction might lead to two different 
fates, where lnc-SLC6A12–1:3 may either recruit transcription factors to 
the promoters of GAD1 and SLC6A12 or inactivate them. To investigate 
lncRNA-transcription factor (TF) interactions, we analysed their binding 
at the 3D protein level to determine whether the lncRNA binds within 
key functional domains of the transcription factors. Binding within a 
functional domain is likely to disrupt or modify the transcription factor’s 
function. supporting this hypothesis, studies have shown that GAS5 
binds to the DNA-binding domain (DBD) of the glucocorticoid receptor 
(GR) and inhibits GR-induced transcriptional activity (Kino et al., 2010). 
While binding outside the functional domain may facilitate TF recruit
ment to target genes. Additionally, if the lncRNA interaction sites for 
mRNA and TF are distinct, it could act as both a cis and trans regulator 
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simultaneously, modulating gene expression through multiple mecha
nisms. The results showed that lnc-SLC6A12–1:3 interacts with the 
disordered regions of IRF1 and FOSL1 (Fig. 6c), suggesting that 
lnc-SLC6A12–1:3 binding may play a role in recruiting these transcrip
tion factors rather than inhibiting their function. Also, the propensity for 
interaction with the SLC6A12 promoter is higher than the GAD1 pro
moter. This is because the SLC6A12 promoter contains two binding sites 
for each of these transcription factors, whereas the GAD1 promoter has 
only one IRF1 binding site and no FOSL1 binding site (Fig. 6a). This 
supports the observation that SLC6A12 mRNA is downregulated when 
lnc-SLC6A12–1:3 levels are reduced in CCA, indicating a potential reg
ulatory role of the lncRNA in maintaining SLC6A12 expression. 
Whereas, GAD1 expression requires either of THAP1 or NR4A1 tran
scription factors binding to its promoter (Fig. 6a), THAP1 has highly 
conserved zinc finger domain at its N-terminal region facilitating DNA 
binding, while the coiled-coil domain (amino acids 139–190) is at its 
C-terminal region (Richter et al., 2017). The catRAPID data suggests that 
lnc-SLC6A12–1:3 interacts with the C-terminal coiled-coil domain of 
THAP1 between 138 and 189 amino acids (Fig. 6c). Hence, this inter
action may decrease THAP1 activity in normal cells. Whereas in CCA, as 
the lncRNA is downregulated, the activity of THAP1 is restored, hence 
the GAD1 is overexpressed. In case of NR4A1 (TR3), lnc-SLC6A12–1:3 
interacts with it between amino acids 323–477, a region where four 
known domains are associated with it, namely RXRα binding domain, 
NGFI-B response element (NBRE) - containing DNA, the nuclear receptor 
C4-type (NR C4) and the nuclear receptor ligand-binding domain (NR 
LBD) (UNIProt_P22736_NR4A1_HUMAN). Www.Uniprot.Org. Retrieved 
January 30, 2025, from Https://Www.Uniprot.Org/Un 
iprotkb/P22736/Entry#family_and_domains, n.d.; Zhao et al., 2007). 
This interaction suggests that lnc-SLC6A12–1:3 binding shows 
decreased activity of NR4A1 due to the masking of all the above four 
domains in a normal cell. Whereas in CCA, as the lnc-SLC6A12–1:3 is 
downregulated, the activity of NR4A1 is restored, hence the GAD1 is 
overexpressed, which is similar to the interaction with lncRNA and 
THAP1. Using integrative analyses from CiiiDER (for promoter TF 
enrichment), catRAPID (for lncRNA-protein interaction predictions), 
and Protein3D structural modelling, we reveal that lnc-SLC6A12–1:3 
and lnc-SLC6A12–7:5 regulate the balance of SLC6A12 and GAD1 
expression by binding to key transcription factors (IRF1, FOSL1, THAP1, 
NR4A1), where they promote SLC6A12 expression by recruiting acti
vating TFs to its promoter and suppress GAD1 expression by inhibiting 
repressive TF activity, thereby maintaining normal GABA metabo
lism—a balance that is lost when these lncRNAs are downregulated in 
cancer.

A key strength of this study is its integrative approach, combining 
differential expression analysis with interaction prediction to identify 
novel lncRNAs linked to cholangiocarcinoma. By focusing on those 
associated with metabolic genes, we explore an underexamined aspect 
of CCA—metabolic reprogramming. The predicted lncRNA-mRNA and 
lncRNA–transcription factor interactions offer mechanistic insights and 
provide a strong foundation for future functional validation. While this 
study is based on in silico analysis of bulk RNA-seq data, we addressed 
this limitation by using strict expression criteria and high-stringency 
filters to reduce false positives. The selected lncRNAs and their inter
acting mRNAs showed consistent expression patterns across all CCA 
patients, adding confidence to our findings. Still, experimental valida
tion through single-cell and functional studies will be important to 
confirm their roles.

In summary, based on these results, we speculate that in normal cells, 
lnc-SLC6A12–1:3 and lnc-SLC6A12–7:5 regulate the expression of 
SLC6A12 and GAD1 through multiple interactions. Lnc-SLC6A12-1:3 
binds to SLC6A12 in cis and GAD1 in trans while also interacting with 
transcription factors IRF1, THAP1, NR4A1 and FOSL1, with IRF1 having 
the highest binding affinity. Lnc-SLC6A12-1:3 recruits IRF1 and FOSL1 
to the promoter of SLC6A12, enhancing its expression, while binding to 
THAP1 and NR4A1 reduces their activity, keeping GAD1 levels in check. 

Additionally, lnc-SLC6A12–1:3 binds to the 3’ CDS and lnc- 
SLC6A12–7:5 to the 5’ CDS of SLC6A12, potentially increasing mRNA 
stability (indicated by green circles). Conversely, their binding to the 3’ 
UTR of GAD1 decreases its stability (purple circles) (Fig. 7). This regu
lation ensures that SLC6A12 expression remains slightly higher and 
GAD1 expression lower in normal cells, maintaining lower GABA levels. 
SLC6A12/BGT1 imports extracellular GABA, to prevent silencing of the 
immune system and thus prevent tumour microenvironment formation. 
In cancer cells, both lnc-SLC6A12–1:3 and lnc-SLC6A12–7:5 are down
regulated. This leads to unchecked GAD1/GAD67 expression and 
elevated GABA synthesis, meeting the high energy demands of cancer 
cells. At the same time, reduced SLC6A12 levels decrease GABA import, 
fostering the tumour microenvironment. This shift highlights the con
trasting roles of these lncRNAs in normal and cancer cell GABA meta
bolism and their impact on tumour progression (Fig. 7).

5. Conclusion

A major strength of this study lies in the novel identification of two 
previously uncharacterized long non-coding RNAs, lnc-SLC6A12–1:3 
and lnc-SLC6A12–7:5, as potential upstream regulators of GAD1 and 
SLC6A12, respectively. These findings suggest a role for these lncRNAs 
in modulating the GABAergic pathway to meet the elevated energy 
demands observed in cholangiocarcinoma (CCA). While these insights 
are based on robust computational analyses, future experimental vali
dation is crucial to confirm these predicted lncRNA–mRNA interactions.

Therapeutic targeting of SLC6A12 may be challenging, as it plays a 
complex role in cancer metabolism regardless of its expression levels. 
When overexpressed, SLC6A12 facilitates GABA import into tumour 
cells, fueling the GABA shunt to meet energy needs. Conversely, when 
downregulated, extracellular GABA accumulates and may aid tumour 
progression through microenvironmental modulation—though direct 
evidence in CCA remains limited.

In contrast, GAD1 presents a more compelling therapeutic target. Its 
inhibition can directly block intracellular GABA synthesis, disrupting 
the GABA shunt and impairing energy supply to tumour cells. Moreover, 
reduced GABA levels in the tumour microenvironment could diminish 
invasion, migration, and immune evasion. GAD1 has also been impli
cated as a hub gene associated with drug resistance, clinicopathological 
features, and immune microenvironment in prostate cancer (Wan et al., 
2023)While L-Allylglycine is known to inhibit GAD after biotransfor
mation into 2-keto-4-pentenoic acid via stereospecific amino acid oxi
dase (Abshire et al., 1988). Its clinical use is limited by safety concerns, 
including seizure induction in animal models (Thomas and Yang, 1991). 
Hence, there is a need for safer, specific GAD1 inhibitors.

Restoration of lnc-SLC6A12–1:3 and lnc-SLC6A12–7:5 expression 
represents an innovative therapeutic strategy. Technologies such as 
CRISPR activation (CRISPRa) can selectively enhance their transcrip
tion, while synthetic lncRNA mimics could be employed to rescue their 
function. These approaches offer promising avenues to re-establish the 
regulatory roles of these lncRNAs and counteract their dysregulation in 
CCA.

Overall, this study contributes new insights into the regulatory 
landscape of the GABAergic pathway in cholangiocarcinoma, identi
fying lnc-SLC6A12–1:3, lnc-SLC6A12–7:5, and GAD1 as promising can
didates for future therapeutic development.
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