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Textiles are an integral part of daily life globally, but their widespread use leads to significant waste generation.
Repurposing these discarded fabrics for energy harvesting offers a sustainable solution to both energy demand
and textile waste management. In this study, Textile-based Triboelectric Nanogenerators (T-TENGs) were
developed using recycled cloth as tribopositive layers and polyvinyl chloride (PVC) film as the tribonegative
layer, with aluminum foil tape serving as electrodes. Five different recycled textiles were evaluated, and Scan-
ning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) analysis revealed a correlation
between yarn structure and carbon content, leading to enhanced triboelectric performance. Silk-based TENG (S-
TENG) demonstrated the highest output, with 320.76 V and 8.73 pA, while exhibiting stable performance over
10,000 cycles. Practical applications were explored by integrating T-TENGs into shoe insoles for energy har-
vesting during walking and jumping, with rayon-based TENG generating up to 208.52 V on a PVC coil mat. This
work highlights the dual benefits of waste reduction and sustainable energy applications, making a compelling
case for advanced technologies where recycled textiles function as frictional materials to harvest mechanical
energy from human motion and convert it into electrical energy for use in flexible sensors and wearable devices.

immeasurable environmental hazards (Alves et al., 2024; Roy Choud-
hury, 2013; Ye et al., 2023). Global textile consumption is projected to

1. Introduction

The textile industry, a significant component of the global
manufacturing sector, plays a crucial role in the economy and social
well-being of today’s world (Jiang et al., 2023; Koksal et al., 2017).
However, due to its diverse and heterogeneous nature, which spans from
fiber transformation into yarns and fabrics to the production of various
products such as synthetic yarns, wool, linen, geo-textiles, and clothing,
it generates substantial negative environmental and social impacts
(Huygens et al., 2023; Senthil Kumar and Suganya, 2017). Compared to
most other industries, the global warming potential of textile production
is notably higher, as vast quantities of landfilled textiles decompose into
greenhouse gasses and contaminate groundwater (Dickson et al., 2014;
Niinimaki et al., 2020). Also, biodegradable textile waste yields
methane, a potent greenhouse gas that exacerbates global warming,
while non-biodegradable and toxic synthetic materials pose
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increase from 62 million tons to 102 million tons by 2030, leading to a
corresponding rise in textile waste (Wagaw and Babu, 2023). The United
States produces 16.2 million tons of textile waste annually, in which 15
% is recycled (Candido, 2021). In China, only 3.5 million tons of textile
waste are recycled, despite 45 % of the total textile waste being dis-
carded (Li et al., 2021). The European Union generates 16 million tons of
textile waste, and recycling is only 26 % (Stanescu, 2021). Canada dis-
poses 0.5 million tons of apparel waste (Juanga-Labayen et al., 2022),
whereas India produces about 6.23 million tons of textile waste annually
(Agrawal and Sharan, 2015). This escalating textile waste highlights the
urgent need for more efficient recycling procedures, which are not only
environmentally important but also economically necessary.
Extracting energy from recycled textile materials is a sustainable and
smart approach to address energy needs and waste management.
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Fig. 1. (a) The schematic illustration of T-TENG fabrication. (b) The real images of the device.

Various technologies and methods have been applied to harness energy
from recycled textiles, including incineration (Nunes et al., 2018),
anaerobic digestion (Kumar et al., 2020), gasification (Arafat and Jijakli,
2013), landfill gas recovery (Wang, 2010), pyrolysis (Yousef et al.,
2019), and many more. Even though these technologies offer potential
benefits, they also present challenges including technological
complexity, cost implications, and environmental concerns
(Athanasopoulos and Zabaniotou, 2022; Khandaker et al., 2022).
Moreover, not all types of waste materials are compatible with every
recycling or disposal method; therefore, technology selection depends
on the specific type of waste and the desired energy outcomes (Ahmed
et al., 2024).

A promising solution to these challenges is the use of triboelectric
nanogenerators (TENGs). TENGs can convert mechanical energy from
scrap textiles into electrical energy through contact electrification and
electrostatic induction (Amini et al., 2024; Dong et al., 2022b). This
innovative technology is relatively low-cost, environmentally friendly
(Amini et al., 2023), and can be integrated into various textile products,
making it a versatile option for energy generation from waste textiles.
Previous research focused on embedding TENGs into traditional textile
frameworks using materials like conductive yarns (Wang et al., 2021),
elastomers (Chen et al., 2016), and piezoelectric yarns (Dong et al.,
2018), laying the groundwork for subsequent breakthroughs. Addi-
tionally, engineered textile architectures have been explored to inte-
grate textile-based TENGs with enhanced mechanical robustness,
washability, and comfort, making them suitable for practical applica-
tions ranging from self-powered wearables to healthcare monitoring
systems (Dong et al., 2022a; Paosangthong et al., 2019). Despite sig-
nificant progress, challenges remain, including the development of
scalable manufacturing techniques, exploration of novel textile archi-
tectures and integration strategies along with waste management. Also,
characterizing and modeling the mechanical and electrical behavior of
textile-based TENGs under real-world conditions is crucial.

Here, in the present study, A range of recycled cloth samples have
been employed, including linen (L), cotton (C), rayon (R), polyester (P),
and silk (S), all sourced from local tailor shops. This variety not only
demonstrates the applicability of different types of waste textiles but
also highlights their distinct contributions from material optimization to
TENG performance. Engineered T-TENGs with PVC film and aluminum
(Al) foil tape demonstrates how waste materials can be effectively in-
tegrated into various TENG architectures such as vertical contact-
separation and single-electrode modes. Notably, the silk-based TENG
(S-TENG) generated a peak-to-peak output voltage of 320.76 V and a
current of 8.73 pA, which was used to charge electrolytic capacitors and
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power a series of green light emitting diodes (LEDs). Practical applica-
tions are showcased by the integration of single electrode mode T-
TENGs into everyday items such as shoe insoles, illustrating their po-
tential to harness biomechanical energy from activities like walking and
jumping on various surfaces, where rayon-based TENG generates up to
208.52V on PVC coil mat. Thus, the current approach addresses the dual
problem of the environmental challenge of textile waste and leverages
the inherent characteristics of different fabrics to enhance TENG per-
formance to both ecological and technological advancements.

2. Experimental Section
2.1. Materials

PVC powder, and tetrahydrofuran (THF) solvent were purchased
from Central Drug House (P) Ltd, New Delhi, India. The waste cloth
samples are collected from tailor shops in Mysore, Karnataka, India. Al
foil tape was purchased commercially.

2.2. T-TENG fabrication

The schematic illustration of the T-TENG device fabrication is pro-
vided in Fig. 1a. To fabricate the device, a portion of a used Polyethylene
terephthalate (PET) water bottle was cut vertically into dimensions of 6
cm x 10 cm and used to house the triboelectric layers. The PET water
bottle serves as a substrate, enhancing the mechanical durability of the
device, while its insulating properties prevent charge leakage. The PVC
film was achieved as reported in our previous study (Ahmed et al.,
2023).

The PVC film was cut to dimensions of 4 cm X 4 cm, and pasted onto
the surface of Al foil tape and used as the top tribonegative layer. Waste
cloth samples were washed two times with deionized water and dried at
room temperature for 24 h. The samples were cut to the same di-
mensions and pasted onto the surface of Al foil tape without further
physical or chemical modification and served as the bottom tribo-
positive layer of the T-TENGs. While Al foil tape serves as both the top
and bottom electrodes of the devices. Real photographic images of the
device are shown in Fig. 1b, showcasing the bottom tribopositive and
top tribonegative layers, along with top and arch views of the device
structure, offering a comprehensive visual representation of the T-
TENG’s design.
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Fig. 2. (a) The SEM images and (b) the EDS spectrum of different textile fabric samples.

2.3. Characterization and electrical measurements

The investigation into the surface morphologies and elemental
compositions of the textile samples was conducted utilizing Scanning
Electron Microscopy coupled with Energy-Dispersive X-ray Spectros-
copy (SEM-EDS, Zeiss, EVOLS15, Germany). This methodical approach
allowed for the detailed observation and analysis of the surface struc-
tures and chemical constituents of the samples. Further, the electrical
characteristics of the T-TENG devices were quantitatively assessed using
a Source Measure Unit (SMU, Keithley, model 2460, USA). To evaluate
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the long-term operational stability of the devices, a custom-engineered
linear motor was employed. During these stability assessments, the
maximum separation distance between the two triboelectric layers was
maintained at 2 cm with the frequency of the contact-separation cycle
set at 7 Hz. This comprehensive evaluation encompasses structural,
compositional and functional assessments of the T-TENG devices,
providing a robust framework for understanding their performance
characteristics and operational durability.
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Fig. 3. (a) The schematic representation of T-TENG. (b-f) Working mechanism of the device.
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Fig. 4. Electrical output performance of T-TENG: (a) Generated voltage, and (b) current. (c) Output under varying frequencies. (d) Output under different forces. (e)
Circuit for voltage and current measurement. (f) Output with varying load resistance. (g) Generated power. (h) Stability test.

3. Results and discussion
3.1. Surface morphological and elemental analysis

The surface morphology of the recycled textile layers (L, C, R, P, and
S) used for T-TENG fabrication, was analyzed using Scanning Electron
Microscopy (SEM). The SEM images of the frictional layers are provided
in both lower and higher resolution (top and bottom Fig. 2a), respec-
tively. The L layer showed a non-stiff arrangement of yarns via SEM
image, providing flexibility that enhances the contact area and charge
transfer efficiency during mechanical deformation. However, the lack of
consistency and density in contact points may limit significant charge
transfer, affecting TENG output performance. The SEM image of the C
layer shows a non-uniform fabric arrangement with larger gaps between
the fabric bunches, reducing the effective contact area, charge genera-
tion and transfer efficiency of the device (Xia et al., 2022). The R layer
also has a non-uniform arrangement but with smaller distances between
fabric bunches, resulting in a higher density of contact points that can
enhance charge transfer, with potential variability in performance. The
SEM image of P layer exhibits a non-stiff yarn arrangement and rela-
tively small gaps between bunches, promotes better contact and flexi-
bility, improving triboelectric interactions and overall TENG efficiency
(Dhanabalan et al., 2019).

The SEM image of the S layer shows a smooth and uniform fabric
arrangement, ensuring consistent and stable contact areas, leading to
reliable and high triboelectric performance due to efficient and
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consistent charge transfer (Ye et al., 2020). Therefore, the morpholog-
ical characteristics observed via SEM directly influence the triboelectric
performance of the fabricated devices.

Energy-Dispersive X-ray Spectroscopy (EDS) was employed to
analyze the elemental composition of textile layers (L, C, R, P, and S).
The EDS results consistently identified carbon (C) and oxygen (O) ele-
ments across the samples. Since S is a protein fiber, the EDS spectrum
reveals the presence of Nitrogen beside the C and O (Karan et al., 2018;
Yang et al., 2019) as shown in Fig. 2b, respectively. C is renowned for its
favorable triboelectric properties, facilitating efficient charge transfer
during mechanical contact and separation (Jayababu and Kim, 2021).
As the C content increases, there is a corresponding potential enhance-
ment in the material’s ability to generate and transfer charges. Thus, the
EDS analysis highlights the critical role of C content in determining the
triboelectric performance of TENGs.

3.2. Working mechanism

The fundamental working principle of TENGs involves a combina-
tion of contact electrification and electrostatic induction. Contact elec-
trification generates static polarized charges, while electrostatic
induction transforms mechanical energy into electricity (Wang and
Wang, 2019; Zhang et al., 2014). The schematic illustration of the T-
TENG device is shown in Fig. 3a indicating the tribo-pairs of the device
consist of recycled cloth samples and PVC layer, with Al foil tape as the
electrodes. The distance (d) between these layers can change under
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applied mechanical force. When the layers come into contact, their
surfaces gain opposite static charges due to contact electrification
(Fig. 3b). Additionally, Al electrodes installed within the TENG system
ensure that charges can only transfer between the electrodes through
external circuits. Once the external force is removed, the frictional layer
starts to separate in a distance d(t), causing the charges to flow between
electrodes (Fig. 3c). If we define the transferred charges from one
electrode to another as Q, one electrode will have a charge of —Q and the
other + Q, creating a potential difference between them. This electrical
potential difference is influenced by the polarized triboelectric charges,
contributing a voltage V(d,t) that depends on the separation distance d
(t), and the transferred charges Q, contributing —Q/C(d,t), where C is
the capacitance between the electrodes. To balance this potential dif-
ference, the electric field produced by the triboelectric charges prompts
electrons flow through the external circuit, leading to the accumulation
of charges on the electrode, represented. Additionally, this can lead to
the generation of pulsed currents in external circuits (Lei et al., 2020).
Further, the total voltage difference between the electrodes can be
expressed as .Vruq = V(d,t) —Q/C(d,t)

The device reaches saturation, indicated by zero charge transfer,
when the friction layers attain their maximum separation distance of 2
cm, as depicted in Fig. 3d. Furthermore, upon re-application of the
external force, the negative charges on the top electrode transfer to the
bottom electrode, generating a reverse pulse current, as illustrated in
Fig. 2e. This flow of charges will drop to zero through the external circuit
once both layers are completely attached to each other. Thus, contin-
uous contact-separation causes the alternating current (AC) generation
by the T-TENG devices.

3.3. Electrical output performance of T-TENG

The electrical performance of T-TENGs fabricated from various
recycled textile materials was systematically evaluated by measuring the
output voltage and current. To better comprehend the impact of textile
properties on the output performance of T-TENGs, properties such as
mass per unit area, thickness, and yarn density were analyzed. The mass
per unit area of the textiles used in T-TENGs was calculated using the
formula m = W/A where W is the weight and A is the area of the sample.
It was found to be 18.75, 15.62, 19.37, 21.87, and 23.75 g/m2 forL,C, R,
P, and S layers, respectively. The detailed calculations are provided in
Note S1 Supporting Information. The textile materials used for device
fabrication have thicknesses of 0.05, 0.02, 0.04, 0.05, and 0.06 cm, and
yarn densities of about 82, 62, 78, 89, and 102 threads/cm? for L, C, R, P,
and S, respectively. These properties directly influence the triboelectric
charge density, mechanical properties, surface area for charge genera-
tion, consistency, and uniformity, all of which are vital for optimizing
the device’s performance and durability (Somkuwar and Kumar, 2023).
Fig. 4a displays the voltage signals generated by the devices, showing an
ascending order for the TENGs composed of L, C, R, P, and S layers,
respectively. The highest output voltage was achieved by the device
with the S layer, attributed to its higher surface charge density, resulting
in higher voltage generation when in contact with other materials in
TENG applications (Cao et al., 2024; Liu et al., 2022). In contrast, the
highest output current was achieved by the device with the R layer,
attributed to its higher charge transfer efficiency, which results in
greater current generation (Cui et al., 2020; Liu et al., 2021) (Fig. 4b).
Understanding these electrical output behavior further aids in selecting
suitable materials for specific TENG applications. The fundamental
principle underpinning this phenomenon involves the transfer of
charges between two Al electrodes, facilitated by the potential differ-
ence arising from their contact and separation. Employing a controlled
experimental setup, where a consistent contact area of 4 cm x 4 cm was
maintained, periodic contact and separation were induced via manual
tapping using a custom-made linear motor (Figure S2, Supporting In-
formation). The experimental configuration involved connecting the
positive probe terminal to the upper Al electrode and the negative
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Table 1
Electrical output performance of the T-TENGs with different recycled textile
samples.

Frictional layers Electrode Output performance
Top Bottom Voltage (V) Current (¢A)
PVC L Al 226.54 6.63

C 250.35 5.29

R 266.87 9.11

P 300.92 7.98

S 320.76 8.73

terminal to the lower electrode, thereby establishing a forward
connection. This setup facilitated the precise measurement of peak-to-
peak voltage and current, with the results subsequently cataloged in
Table 1. Notably, the S-TENG generated a peak-to-peak output voltage
of 320.76 V and a current of 8.73 pA, which was utilized for further
electrical characterizations and applications. The output performance of
the device was investigated under varying operational frequencies
ranging from 2 to 12 Hz. The results showed that both the output voltage
and current increased with increasing operational frequency, reaching
their peak values at 7 Hz (Fig. 4c). This peak performance is attributed to
the resonance frequency of the S-TENG device (Amini et al., 2023),
where the mechanical vibrations are most efficiently converted into
electrical energy.

However, beyond this optimal frequency, the output performance
begins to decrease due to the rapid contact and separation, which pre-
vents the layers from achieving their maximum separation distance,
thereby reducing the overall output performance of the TENG device.
Further, the output performance of the device was assessed under
varying externally applied forces to evaluate its efficiency in converting
mechanical motion into electricity. Using a force sensor, the applied
force was varied from 2 to 12 N. The results showed that both the
generated voltage and current increased with the increase in applied
force (Fig. 4d). This indicates that the device is highly effective at con-
verting mechanical energy into electrical energy. Further experimental
investigations extended to analyze the S-TENG’s output performance
under varying load conditions. This was accomplished by connecting
electrical loads of different resistance values, ranging from 10 to 100
MQ, to the device and meticulously measuring the resultant output
voltage and current. The circuit connections for measuring voltage and
current are provided in schematic Fig. 4e, with the top part illustrating
the voltage measurement setup and the bottom part depicting the cur-
rent measurement configuration. The results showed that the generated
voltage of the device increased with increasing load resistance, while the
current decreased, consistent with Ohm’s law (Sagade Muktar Ahmed
et al., n.d.).

The voltage and current curves intersect at 60 MQ, indicating the
optimal load resistance of the device as shown in Fig. 4f. This represents
the balance where the device can achieve its maximum power output,
demonstrating its efficiency under varying electrical load conditions. In
addition, the generated power of the device was calculated using the
formula, P = IR where I is the instantaneous current and R is the
respective load resistance. The maximum power generated by the device
was found to be 3.22 mW which is sufficient to power small-scale
electronics (Fig. 4g). Further, the generated power density of the de-
vice is calculated using the formula Pp,,; = P/A where P is the generated
power and A is the effective contact area of the fabricated device. The
power density of the optimized device is found to be 2.01 W/m?. The
electrical stability of the device was assessed through 10,000 cycles of
operation. The corresponding voltage signals in Fig. 4 h indicate that the
voltage remains constant throughout the cycles, demonstrating the de-
vice’s mechanical durability and electrical stability. Furthermore, to
assess long-term durability and electrical stability of S-TENG, the output
voltage and current of the device was evaluated over 5 months, finding
consistent performance throughout the testing period, ensuring their
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practical viability and sustainability in real-world applications
(Figure S1 Supporting Information).This comprehensive analysis not
only elucidates the electrical performance characteristics of T-TENGs
across different textile layers but also provides insights into their
behavior under diverse conditions, thereby contributing to the broader
understanding of T-TENG operational dynamics.

3.4. Life cycle assessment

Conducting a life cycle assessment (LCA) for recycled textile fabrics
used in TENGs involves evaluating the environmental impacts across
different stages of the product’s life. It begins with the raw material
extraction phase, where discarded or post-consumer textiles composed
of L, C, R, P, and S were collected from tailor shops as the primary
source. These textiles then undergo a recycling process, which involves
sorting by material type, cleaning to remove contaminants, and pre-
paring the fabric for further processing. Once recycled, the fabric is
processed and transformed into functional layers for TENGs using metal
components for electrodes.

During the recycling and manufacturing stages, energy consumption
is a key factor, and both the energy used in recycling the textiles and the
energy required to convert them into TENG layers are included in the
assessment. Emissions generated during transportation and production
processes are accounted for in the energy and emission inputs. Addi-
tionally, the water footprint of textile recycling, including water used in
washing and any chemical treatments, is thoroughly evaluated. Waste
outputs, such as residual waste from rejected fabrics or scrap materials
during the manufacturing process, are also considered in the LCA.

The transportation phase evaluates the environmental impact of
moving recycled textiles to processing sites and distributing the final
TENG product. Trade-offs between increased energy demand during
recycling and the reduced material extraction from virgin resources are
analyzed. Recycled textiles offer enhanced recyclability, allowing the
possibility of further recycling or energy recovery, which contributes to
the reduction of waste. The disposal of electronic components in TENGs,
such as electrodes, is carefully considered, with an emphasis on mini-
mizing electronic waste.

The lifetime of textiles varies widely based on the type, usage,
environmental conditions, and maintenance. For example, under normal
conditions, the estimated lifespan is approximately 10 years for L, 3
years for C and R, 5 years for P, and 2 years for S (Gonzalez et al., 2023;
Islam et al., 2021). For textile-based TENGs, the lifespan is influenced by
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factors such as mechanical stress, moisture, temperature fluctuations,
and chemical exposure, which can shorten their durability (Li et al.,
2023; Liman et al., 2022).

By using recycled materials, we significantly reduce textile waste,
aligning with circular economy principles (Christensen, 2021; Saha
et al., 2022). As TENGs are self-powered systems, they provide sus-
tainable energy generation with minimal ongoing resource use.
Compared to virgin textile-based TENGs, recycled textile TENGs can
reduce the environmental burden of fabric production, leading to a more
sustainable approach to energy harvesting. The detailed LCA un-
derscores the environmental advantages of using recycled textiles in
TENGs and provides a clearer understanding of their overall environ-
mental impact.

4. Applications

The application of a TENGs for energy harvesting represents a sig-
nificant advancement in the realm of renewable energy, utilizing the
triboelectric effect to transform mechanical energy into electrical energy
(Trinh and Chung, 2023). However, TENGs naturally produce alter-
nating current (AC), which cannot be used directly to power electronic
devices that require direct current (DC). Therefore, a rectifier bridge is
employed to convert the AC output of the S-TENGs into DC, as illustrated
in Fig. 5a. This rectified output from the S-TENG is then used to charge
three distinct electrolytic capacitors with capacitances of 1.1 pF, 4.7 uF,
and 10 pF. These capacitors are observed to be charged to voltages of
7.12V,5.26 V, and 4.23 V respectively, as shown in Fig. 5b. The energy
stored in each capacitor can be calculated using the formula E =
1/2 CV2, where C is the capacitance, and V is the voltage. Based on this
formula, the stored energies are determined to be 26.95 uJ for the 1.1 pF
capacitor, 58.75 pJ for the 4.70 pF capacitor, and 80.01 pJ for the 10 pF
capacitor within 20 s, as illustrated in Fig. 5c. Further, the device is
demonstrated to power a series of green LEDs. The circuit used for this
purpose is depicted in Fig. 5d. The practical implementation, with the S-
TENG connected to the rectifier bridge and the series of 57 LEDs, and the
visual evidence that the device is capable of powering the entire series of
57 LEDs are provided in Fig. 5e and Supporting Video S1. Further, to
demonstrate its practical application, the device is utilized to power a
smartwatch without the use of any external battery (Fig. 5f, and Sup-
porting Video S2). This illustrates the potential of T-TENGs to serve as a
sustainable and efficient energy source for low-power electronic devices.
The capability to convert mechanical energy from movements or
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Fig. 6. (a-e) The generated voltage signals of T-TENGs for each fabric sample. (f) Comparative analysis.

vibrations into usable electrical energy, store it effectively, and then
utilize it to power electronic components demonstrates the versatility
and efficacy of T-TENG technology in practical applications.

To demonstrate the real-time application of the fabricated T-TENGs,
composed of various fabrics namely L, C, R, P, and S, were configured in

a single-electrode mode to harness biomechanical energy. These T-
TENG devices were ingeniously integrated into the insoles of shoes,
allowing them to generate voltage from the mechanical energy produced
by walking (W) and jumping (J) (Supporting video S3 and S4, respec-
tively). The performance of these devices was tested on six different
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Table 2
The electrical output performance of T-TENG in single electrode mode.

Waste Management 190 (2024) 477-485

Samples Energy harvesting form Output voltage generated using different contact materials
Concrete floor Nylon mat Rubber mat Woolen mat Gel-foam mat PVC coil mat
L Walking 12.03 19.96 87.32 23.01 51.64 111.79
Jumping 18.21 38.43 119.10 46.36 53.88 116.24
C Walking 20.25 22.25 32.66 57.16 68.33 147.21
Jumping 25.57 30.03 104.05 80.81 86.44 171.34
R Walking 23.45 15.85 85.38 48.55 18.25 178.41
Jumping 26.84 44.84 104.63 126.70 54.19 208.52
P Walking 26.82 30.90 59.03 21.95 30.99 120.47
Jumping 29.23 34.92 99.30 33.91 40.42 140.95
S Walking 32.19 23.89 66.14 99.44 29.97 127.39
Jumping 36.43 28.94 158.89 177.31 76.75 163.51

surfaces including concrete floor (CF), nylon mat (NM), rubber mat
(RM), woolen mat (WM), gel-foam mat (GM), and PVC coil mat (PM).
The generated voltage signals from T-TENG devices using L, C, R, P, and
S as the triboactive layer are shown in Fig. 6a to 6e, respectively. These
figures indicate that the devices consistently produced higher output
voltages under jumping conditions compared to walking, with the PM
being the most effective surface. The detailed output performance of
these devices is presented in Table 2, which reveals the superior per-
formance of the R-fabric-based device.

Specifically, this device generated an impressive 178.41 V during
walking and 208.52 V during jumping on the PM, as illustrated in Fig. 6f.
The circuit connection is provided in the inset of Fig. 6f, with a more
detailed version in Figure S3 Supporting Information. This novel
application showcases the versatility and practical utility of T-TENG
technology. By embedding T-TENGs into the insoles of shoes, it becomes
feasible to harvest energy from routine activities such as walking and
jumping. This integration transforms ordinary movements into a sus-
tainable energy source, highlighting the potential of T-TENGs in wear-
able technology.

Further, the ability of these devices to generate substantial voltage,
particularly when using R on a PM, underscores their potential for high-
efficiency energy harvesting. The use of various fabrics demonstrates the
adaptability of T-TENGs to different materials, optimizing the tribo-
electric effect based on the application. The high output voltage ach-
ieved by the R-fabric-based T-TENG suggests that the material
properties of R, combined with the triboelectric characteristics of the
PM, create an optimal environment for energy generation. Furthermore,
the practical implementation of T-TENGs in shoe insoles points to a wide
range of potential applications in wearable technology, from powering
small electronic devices to serving as a supplementary energy source for
portable gadgets. The real-world setup, detailed in the figures and ta-
bles, provides a clear validation of the technology’s effectiveness and
efficiency.

5. Conclusions

The present work successfully demonstrated the fabrication and
characterization of Textile-based Triboelectric Nanogenerators (T-
TENGs) using various recycled textiles. Five T-TENGs were fabricated
using various recycled fabrics (L, C, R, P, and S) as tribopositive mate-
rials and PVC as tribonegative material and Al foil tape as electrode.
SEM analysis was conducted to explore the surface morphology of the
textile layers while EDS analysis has been performed to determine the
elemental composition of textile layers. SEM revealed distinct yarn ar-
rangements in these textile layers, which directly influence triboelectric
performance. EDS analysis identified carbon (C) and oxygen (O) in all
samples, with carbon content increasing from L to S. The electrical
output performance of the T-TENG devices was systematically evalu-
ated. Among the samples, the S-TENG achieved the highest output
voltage of 320.76 V and a current of 8.73 pA. Additionally, the device
was utilized to charge various electrolytic capacitors and power a series
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of 57 LEDs. T-TENG applications were explored by integrating the de-
vices into shoe insoles to harvest biomechanical energy from walking
and jumping on different surfaces. The rayon-based T-TENG showed the
highest voltage generation, reaching up to 208.52 V during jumping on a
PVC coil mat, demonstrating its potential for wearable technology and
energy harvesting applications. Therefore, the present study not only
addresses energy needs by extracting energy from recycled textiles but
also offers a sustainable solution to mitigate the environmental impact
associated with textile waste accumulation.
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