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�e second degree of a vertex in a simple graph is de�ned as the number of its second neighbors. �e leap eccentric connectivity
index of a graphM, Lξc(M), is the sum of the product of the second degree and the eccentricity of every vertex inM. In this paper,
some lower and upper bounds of Lξc(S(M)) in terms of the numbers of vertices and edges, diameter, and the �rst Zagreb and
third leap Zagreb indices are obtained. Also, the exact values of Lξc(S(M)) for some well-known graphs are computed.

1. Introduction

In this paper,M is a �nite and undirected simple graph. Let
V(M) and E(M) be sets of vertices and edges of M, re-
spectively. �en, we put n � |V(M)| and m � |E(G)|. If
a, b{ }⊆V(M), then the length of a shortest path connecting
a and b in M is the distance between a and b in M and
denoted by dM(a, b). Let x be a vertex of M, and let r be a
positive integer. �en, the open r-neighborhood of x inM,
Nr(x), is the set of all vertices at distance r from x; that is,
Nr(x) � v ∈ V(M): dM(v, x) � r{ }. �e r-distance degree
of a vertex x inM is the size of the open r-neighborhood of x
in M, and it is denoted by dr(x/M) or simply dr(x) if no
misunderstanding is possible; that is,
dr(x/M) � dr(x) � |Nr(x)|. It is clear that d1(x/M) is the
degree of vertex x in M, and we denoted it by dM(x) or
simply d(x). Also, the eccentricity of a vertex x inM, e(v), is
de�ned as e(v) � max dM(v, u): u ∈ V(M){ }, and the di-
ameter and radius of graph M are de�ned as diam(M) �
max e(v): v ∈ V(M){ } and rad(M) � min e(v): v ∈ V(M){ },
respectively.

�e subdivision graph S(M) of a simple graphM is the
graph obtained from M by inserting an additional vertex
into each edge ofM, or equivalently, by replacing each of its
edges with a path of length 2 [1].

�e wheel graphW1,q of order q + 1 is the join ofK1 and
Cq in which K1 is the complete graph with one vertex, and
Cq is the q -vertex cycle graph. Clearly, |V(W1,q)| � q + 1
and |E(W1,q)| � 2q. �e apex vertex of the wheel is the
vertex corresponding toK1, and the rim vertices of the wheel
are the vertices corresponding toCq [2]. Note that all notions
and notations not de�ned here can be obtained from the
book of Harary [2].

In chemical graph theory, a numerical parameter of a
given graph that is applicable in some chemical problems is
called a topological index. �e Zagreb group indices are two
degree-based topological indices that were de�ned by
Gutman and Trinajestic [3] in 1972 and elaborated in [4].
�ese indices are de�ned as

M1(M) � ∑
x∈V(M)

dM(x)
2,

M2(M) � ∑
ab∈E(M)

dM(a)dM(b).
(1)

For the main properties of these two indices, we refer the
interested readers to [3–7].

In 2017, Naji et al. [8] introduced three topological
indices depending on the second degree of vertices. �ese
invariants are so-called leap Zagreb topological indices and
can be de�ned as follows:

Hindawi
Journal of Mathematics
Volume 2022, Article ID 7880336, 7 pages
https://doi.org/10.1155/2022/7880336

mailto:alighalavand@grad.kashanu.ac.ir
https://orcid.org/0000-0002-8186-0146
https://orcid.org/0000-0002-6844-0948
https://orcid.org/0000-0003-1968-4097
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7880336


LM1(M) � 􏽘
v∈V(M)

d2(v)
2
,

LM2(M) � 􏽘
uv∈E(M)

d2(u)d2(v),

LM3(M) � 􏽘
v∈V(M)

d(u)d2(v).

(2)

In [9], the first leap Zagreb topological index of some
graph operations is computed, and in [10], some formulas
for the leap Zagreb indices of generalized rts point line
transformation graphs Trts(M), when s � 1, are obtained.
We refer to [8–14] for more details on the leap Zagreb
indices of graphs. In [15], Sharma et al. introduced the
eccentric connectivity index of the graph M as
ξc

(M) � 􏽐v∈V(M)d(v)e(v). For mathematical properties,
the interested readers can consult [15–17].

Recently, authors found in [18] introduced the leap
eccentric connectivity index of a graph M. It is denoted by
Lξc

(M) and can be defined Lξc
(M) � 􏽐v∈V(M)d2(v)e(v).

'ey obtained the exact values of the leap eccentric con-
nectivity index of complete, complete bipartite, cycle, path,
and wheel graphs and determined some upper and lower
bounds for Lξc

(M) in terms of the number of vertices,
number of edges, diameter, total eccentricity, and Zagreb
indices. In [19], the explicit formulas of the leap eccentric
connectivity index for the Cartesian product, composition,
disjunctions, symmetric difference, and corona product
were computed.

In [20], exact values of Lξc for thorny complete graphs,
thorny complete bipartite graphs, thorny cycles, and
thorny paths were reported. 'e authors of this paper also
discussed some applications of the leap eccentric con-
nectivity index of chemical structures such as cyclo-al-
kanes. In [21], some new upper and lower bounds for
Lξc

(M) in the terms of the order, size, diameter, radius,
and total eccentricity, Zagreb, and leap Zagreb indices are
found. In the mentioned paper, some lower and upper
bounds of Lξc

(S(M)) in terms of the numbers of vertices
and edges, diameter, and the first Zagreb and third leap
Zagreb indices are also obtained.'ey also found the exact
values of Lξc

(S(M)) for some well-known graphs.
'e following results of [18,22] are crucial in our

arguments:

Theorem 1 (see [18]). Let n≥ 3 be an integer. -en,

Lξc
Pn( 􏼁 �

3n
2

− 10n + 12
2

, 2|n,

3n
2

− 10n + 11
2

, 2|n.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

Theorem 2 (see [18]). Let n≥ 3 be an integer. -en,

Lξc
Cn( 􏼁 �

0, n � 3,

8, n � 4,

n
2
, n≠ 4, 2 ∣ n,

n(n − 1), n≠ 3, 2∤n.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Lemma 1 (see [22]). Let M be an n-vertex connected graph of
size m. -en,

d2(v)≤ 􏽘
u∈N1(v)

d1(u)⎛⎝ ⎞⎠ − d1(v). (5)

-e equality is attained if and only if G is a C3, C4􏼈 􏼉-free
graph.

By Lemma 1, for a (C3, C4)-free graph M, we have
􏽐v∈V(G)d2(v) � M1 − 2m.

2. Main Results

'e aim of this paper is to present the exact values of leap
eccentric connectivity index of subdivision graph of some
standard graphs.

Theorem 3. Suppose n≥ 3. -en,

Lξc
S Kn( 􏼁( 􏼁 �

36, if n � 3,

n(n − 1)(4n − 5), otherwise.
􏼨 (6)

Proof. Let a1, a2, . . . , an be the vertices of Kn, and let
b1, b2, . . . , bm be the new vertices added to Kn to obtain
S(Kn), where m is the size of Kn. 'en, d2(ai) � n − 1,

d2(bj) � 2n − 4, e(ai) � 3, and e(bj) �
3, if n � 3,

4, otherwise.􏼨

By definition, we have two following cases: □

Case 1. If n � 3, then

Lξc
S K3( 􏼁( 􏼁 � 􏽘

6

i�1
(2)(3) � 6(6) � 36. (7)

Case 2. If n≥ 4, then

Lξc
S Kn( 􏼁( 􏼁 � 􏽘

w∈V S Kn( )( )

d2(w)e(w)

� 􏽘
n

i�1
d2 ai( 􏼁e ai( 􏼁 + 􏽘

m

i�1
d2 bj􏼐 􏼑e bj􏼐 􏼑

� 􏽘
n

i�1
(n − 1)(3) + 􏽘

m

j�1
(2n − 4)(4)

� 3n(n − 1) + 8m(n − 2).

(8)

Since for the complete graph Kn, m � n(n − 1)/2, it
follows that
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Lξc
(S(Kn)) � n(n − 1)(4n − 5).

Theorem 4. For r≥ s≥ 2, let Kr,s be the complete bipartite
graph. -en,

Lξc
S Kr,s􏼐 􏼑􏼐 􏼑 � rs(3r + 3s + 2). (9)

Proof. Suppose r≥ s≥ 2 and (V1, V2) is a partition of the
vertex set, where V1 � v1, v2, v3, . . . , vr􏼈 􏼉, V2 � u1, u2, u3,􏼈

. . . , us} and let W � w1, w2, w3, . . . , wrs􏼈 􏼉 be the set of new
vertices in S(Kr,s). 'en, d2(vi) � s, d2(uj) � r,
d2(wk) � r + s − 2, e(vi) � 4, e(uj) � 4, and e(wk) � 3. By
definition,

Lξc
S Kr,s􏼐 􏼑􏼐 􏼑 � 􏽘

vi∈V1

d2(v).e(v) + 􏽘
uj∈V2

d2(u).e(u)

+ 􏽘
wk∈V3

d2(w).e(w)

� 􏽘
r

i�1
(s)(4) + 􏽘

s

j�1
(r)(4) + 􏽘

rs

k�1
(r + s − 2)(3)

� 4rs + 4rs + 3rs(r + s − 2)

� rs(3r + 3s + 2).

(10)
□

Theorem 5. Let K1,n−1 be the star graph of order n≥ 3. -en,

Lξc
S K1,n−1􏼐 􏼑􏼐 􏼑 � 3n(n − 1). (11)

Proof. Let v0 ∈ K1,n−1, with d(v0) � n − 1, are be the central
vertex, v1, v2, . . . , vn−1 are be the pendent vertices of K1,n−1,
and u1, u2, . . . , un−1 are be the new vertices added to K1,n−1,
to obtain S(K1,n−1). If i � 1, 2, . . . , n − 1, then d2(v0) � n − 1,
d2(vi) � 1, d2(ui) � n − 2, e(v0) � 2, e(vi) � 4, and
e(ui) � 3. By definition,

Lξc
S K1,n−1􏼐 􏼑􏼐 􏼑 � d2 v0( 􏼁e v0( 􏼁 + 􏽘

n−1

i�1
d2 vi( 􏼁e vi( 􏼁 + 􏽘

n−1

j�1
d2 uj􏼐 􏼑e uj􏼐 􏼑

� (n − 1)(2) + 􏽘
n−1

i�1
(1)(4) + 􏽘

n−1

j�1
(n − 2)(3) � 3n(n − 1).

(12)

□
Theorem 6. Let r≥ 1 and s≥ 1 be two integers such that
n � r + s≥ 3. -en,

3n(n − 1)≤Lξc
S Kr,s􏼐 􏼑􏼐 􏼑≤

1
4
n
2
(3n + 2). (13)

On the left hand side, equality occurs if and only if
Kr,s � K1,n−1. On the right hand side, equality occurs if and
only if Kr,s � K(n/2),(n/2).

Proof. We consider two cases as follows:

(i) r � 1 or s � 1. In this case, G � K1,n−1, and by
'eorem 5, Lξc

(S(Kr,s)) � 3n(n − 1).
(ii) s, r≥ 2. In this case, since r + s � n,

2(n − 2)≤ rs≤ (n/2)(n/2). Now, by 'eorem 4,
2(n − 2)(3n + 2)≤Lξc

(S(Kr,s))≤ (1/4)n2(3n + 2).
On the left hand side, equality holds if and only if
Kr,s � K2,n−2. On the right hand side, equality holds
if and only if Kr,s � Kn/2,n/2.

On the other hand, 2(n − 2)(3n + 2) − 3n(n − 1) � n

(3n − 5) − 8> 0. 'erefore, by (i) and (ii), 3n(n − 1)≤
Lξc

(S(Kr,s))≤ 1/4n2(3n + 2). On the left hand side, equality
occurs if and only if Kr,s � K1,n−1, and on the right hand side,
equality occurs if and only if Kr,s � Kn/2,n/2. □

Proposition 1. Let n be an integer. -en,

Lξc
S Cn( 􏼁( 􏼁 � 4n

2
. (14)

Proof. Since S(Cn) � C2n, the proof follows from 'eorem
2. □

Proposition 2. Let n≥ 2 be an integer. -en,
Lξc

(S(Pn)) � 2(3n2 − 8n + 6).

Proof. Since S(Pn) � P2n−1, the proof follows from'eorem
1. □
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Theorem 7. For n≥ 6, Lξc
(S(W1,n)) � 2n(2n + 23).

Proof. Let v0 be the central vertex of W1,n, v1, v2, . . . , vn, be
the rim vertices W1,n and let S(W1,n) be the subdivision of
W1,n. If wi subdivides v0vi, 1≤ i≤ n, uj subdivides vjvj+1,
1≤ j≤ n − 1 and un subdivides vnv1. One can easily verify

Lξc
(S(W1,n)) � 120, if n � 3, Lξc

(S(W1,n)) � 204, if n � 4
and Lξc

(S(W1,n)) � 310, if n � 5. Let n≥ 6.'en, d2(v0) � n,
d2(vi) � 3, d2(uj) � 4, d2(wk) � n + 1, e(v0) � 3, e(vi) � 5,
e(uj) � 6, e(wk) � 4, 1≤ i, j, k≤ n. By definition, we have

Lξc
S W1,n􏼐 􏼑􏼐 􏼑 � 􏽘

v∈V S W1,n( )(

d2(v)e(v)

� d2 v0( 􏼁e v0( 􏼁 + 􏽘
n

i�1
d2 vi( 􏼁e vi( 􏼁 + 􏽘

n

i�1
d2 uj􏼐 􏼑e uj􏼐 􏼑 + 􏽘

n

i�1
d2 wk( 􏼁e wk( 􏼁

� (n)(3) + 􏽘
n

i�1
(3)(5) + 􏽘

n

i�1
(4)(6) + 􏽘

n

i�1
(n + 1)(4) � 2n(2n + 23).

(15)

□
Theorem 8. For natural numbers r and s, let Dr,s be a double
star with v1, v2, v3, . . . , vr be the pendent vertices have support
at v0 and u1, u2, u3, . . . , us, be the pendent vertices have
support at u0. -en,

Lξc
S Dr,s􏼐 􏼑􏼐 􏼑 � 5 r

2
+ s

2
􏼐 􏼑 + 13(r + s) + 8. (16)

Proof. Let xi subdivides v0vi, 1≤ i≤ r, yj subdivides u0ui,
1≤ j≤ s, and w0 subdivides v0u0. 'en, d2(v0) � r + 1 ,
d2(u0) � s + 1, d2(w0) � r + s, d2(vi) � 1, d2(uj) � 1,
d2(xi) � r, d2(yj) � s, e(v0) � 4, e(u0) � 4,
e(w0) � 3e(vi) � 6, e(uj) � 6, e(xi) � 5, and e(yj) � 5. By
definition, we have

Lξc
S Dr,s􏼐 􏼑􏼐 􏼑 � d2 v0( 􏼁e v0( 􏼁 + 􏽘

r

i�1
d2 xi( 􏼁e xi( 􏼁 + 􏽘

r

i�1
d2 vi( 􏼁e vi( 􏼁 + d2 w0( 􏼁e w0( 􏼁

+ d2 u0( 􏼁e u0( 􏼁 + 􏽘
s

j�1
d2 yj􏼐 􏼑e yj􏼐 􏼑 + 􏽘

s

j�1
d2 uj􏼐 􏼑e uj􏼐 􏼑

� (r + 1)(4) + 􏽘
r

i�1
(r)(5) + 􏽘

r

i�1
(1)(6) +(r + s)(3) +(s + 1)(4)

+ 􏽘

s

j�1
(s)(5) + 􏽘

s

j�1
(1)(6)

� 5 r
2

+ s
2

􏼐 􏼑 + 13(r + s) + 8.

(17)

□
Theorem 9. Let n≥ 7 be a natural number. -en,

Lξc
S Di,n−2−i􏼐 􏼑􏼐 􏼑> Lξc

S Di+1,n−3−i􏼐 􏼑􏼐 􏼑 for i � 1, 2, . . . ⌊
n − 2
2
⌋ − 1.

(18)

Proof. By 'eorem 8,

Lξc
S Di,n−2−i􏼐 􏼑􏼐 􏼑 − Lξc

S Di+1,n−3−i􏼐 􏼑􏼐 􏼑 � 10(n − 2i − 3).

(19)

Now, if 2|n − 2, then by (19),
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Lξc
S Di,n−2−i􏼐 􏼑􏼐 􏼑 − Lξc

S Di+1,n−3−i􏼐 􏼑􏼐 􏼑≥ 10 n − 2
n − 2
2

− 1􏼒 􏼓 − 3􏼒 􏼓 � 10. (20)

And if 2∤n − 2, then by (19),

Lξc
S Di,n−2−i􏼐 􏼑􏼐 􏼑 − Lξc

S Di+1,n−3−i􏼐 􏼑􏼐 􏼑≥ 10 n − 2
n − 3
2

− 1􏼒 􏼓 − 3􏼒 􏼓 � 20. (21)

'erefore, Lξc
(S(Di,n−2−i))> Lξc

(S(Di+1,n−3−i)) for
i � 1, 2, . . . ⌊n − 2/2⌋ − 1. □

Corollary 1. Let r, s, and n be three natural numbers such
that r + s + 2 � n≥ 7. -en,

5
2

n
2

+ 3n − 8≤ Lξc
S Dr,s􏼐 􏼑􏼐 􏼑≤ 5n

2
− 17n + 32, 2 | n − 2,

1
2

(5n + 1)(n − 3)≤ Lξc
S Dr,s􏼐 􏼑􏼐 􏼑≤ 5n

2
− 17n + 32, 2 | n − 2.

(22)

On the left hand side, equalities occur if and only if
Dr,s � D⌊n−2/2⌋,⌊n−2/2⌋. On the right hand side, equalities occur
if and only if Dr,s � D1,n−3.

Theorem 10. Let M be an n-vertex connected graph of size m

such that n≥ 3. -en,

Lξc
(M) ≤ nM1(M) − 2nm − LM3(M). (23)

'e bound is attained for P4.

Proof. Since e(v)≤ n − d(v) for every v ∈ V(M),

Lξc
(M) � 􏽘

v∈V(M)

d2(v)e(v)≤ 􏽘
v∈V(M)

d2(v)(n − d(v))

� 􏽘
v∈V(M)

nd2(v) − 􏽘 d1(v)d2(v)

� n 􏽘
v∈V(M)

d2(v) − 􏽘 d1(v)d2(v).

(24)

Using definition of LM3(M) and Lemma 3, we get

Lξc
(M)≤ n 􏽘

v∈V(M)

􏽘
uv∈E(M)

d(u) − d(v)⎛⎝ ⎞⎠ − LM3(M)

� n 􏽘
v∈V(M)

d(v)
2

− 2nm − LM3(M)

� nM1(M) − 2nm − LM3(M).

(25)

□

Corollary 2. Let M be an n-vertex connected graph of size m

such that n≥ 3. -en,

Lξc
(S(M))≤ (n + m − 3)M1(M) + 4m. (26)

Proof. For uv ∈ E(M), let vuv be the new vertex of degree 2
on uv in S(M). By definition of S(M), d(v/S(M)) � d

(v/M), d2(v/S(M)) � d2(v/M) for v ∈ V(M) and
d(vuv/S(M)) � 2, d2(vuv/S(M)) � d(u/M) + d(v/M) − 2
for uv ∈ E(M). 'erefore, M1(S(M)) � M1(M) + 4m and
LM3(S(M)) � M1(M) + 2M1(M) − 4m � 3M1(M) − 4m.
So, by'eorem 10, Lξc

(M)≤ (n + m − 3)M1(M) + 4m. □

Theorem 11. Let M be an n-vertex connected graph of size
m≥ 2. -en, Lξc

(S(G))≥ 2(n + m).

Proof. Let V0 � v ∈ V(M); d(v) � n − 1{ } and n0 � |V0|.
'en, d2(v) � 0 for every v ∈ V0 and for every u ∈ V V0, we
have e(u)≥ 2 and d2(u)≥ 1. Hence,

Lξc
(M) � 􏽘

v∈V0

d2(v)e(v) + 􏽘
v∈V/V0

d2(v)e(v)

≥ 􏽘
v∈V0

(0)(1) + 􏽘
v ∈ V/V0

(1)(2)

� 2 V/V0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� 2 n − n0( 􏼁.

(27)

Now, it is easy to see that the number of vertices of S(M)

is n + m, and the number of vertices of degree n − 1 in S(M)

is zero. 'erefore, by (27), we have Lξc
(S(M)) ≥ 2

(n(S(M)) − n0(S(M)) � 2(n + m). □

Theorem 12. Let M be an n-vertex graph of size m. -en,

Lξc
(M)≤diam(M) M1(M) + 2m( 􏼁. (28)

'e equality occurs if and only if M is a self-centered and
C3, C4􏼈 􏼉-free graph.

Proof. By definition, for all v ∈ V(M), e(v)≤diam(M), the
equality holds if and only if M is a self-centered. Also, by
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Lemma 3, 􏽐v∈V(M)d2(v)≤M1(M) − 2m, and the equality
occurs if and only if M is a C3, C4􏼈 􏼉-free graph. 'erefore,

Lξc
(M) � 􏽘

v∈V(M)

d2(v)e(v)

≤ 􏽘
v∈V(M)

d2(v)diam(M)

≤diam(M) M1(M) − 2m( 􏼁.

(29)

'e equalities hold if and only if M is a self-centered and
C3, C4􏼈 􏼉-free graph. □

Corollary 3. Let M be an n-vertex graph of size m. -en,

Lξc
(S(M))≤diam(S(M))M1(M). (30)

-e equality occurs if and only if S(M) is a self-centered.

Theorem 13. Let M be an n-vertex connected graph of size m

such that n≥ 4. -en, Lξc
(S(M)) ≥ 4M1(M) − 2m, the

equality occurs if and only if M � Kn.

Proof. By definition of S(M), for all v ∈ V(M),
d2(v/S(M)) � d(v/M), e(v)≥ 3, and the equalities occur if
and only if M � Kn. Also, for all uv ∈ E(M),
d2(vuv/S(M)) � d(v/M) + d(u/M) − 2, e(vuv)≥ 4, and the
equalities occur if and only if M � Kn. 'erefore, by defi-
nitions of Lξc and S(M), we have

Lξc
(S(M)) � 􏽘

v∈V(M)

d2
v

S(M)
􏼠 􏼡e

v

S(M)
􏼠 􏼡 + 􏽘

uv∈E(M)

d2
vuv

S(M)
􏼠 􏼡e

vuv

S(M)
􏼠 􏼡

≥ 􏽘
v∈V(M)

3d
v

M
􏼒 􏼓 + 􏽘

uv∈E(M)

4 d
u

M
􏼒 􏼓 + d

v

M
􏼒 􏼓 − 2􏼒 􏼓

� 6m + 4M1(M) − 8m

� 4M1(M) − 2m.

(31)

'e equality occurs if and only if M � Kn. □
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