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Abstract Automatic detection of Alzheimer’s disease

using magnetic resonance imaging is a hard task, due to the

complexity and variability of the size, location, texture, and

shape of the lesions. The objective of this study is to pro-

pose a proper feature dimensional reduction and classifier

to improve the performance of Alzheimer’s disease

detection. At first, the brain images are acquired from Open

Access Series of Imaging Studies and National Institute of

Mental Health and Neuro Sciences databases. Then, con-

trast-limited adaptive histogram equalization and normal-

ization technique are applied for improving the visual

ability of the collected raw images. Next, discrete wavelet

transform is used to transform the denoised images in order

to extract the feature vectors, and probabilistic principal

component analysis algorithm is developed to decrease the

dimension of the extracted features that effectively lessen

the ‘‘curse of dimensionality’’ concern. At last, long short-

term memory classifier is used for classifying the brain

images as Alzheimer’s disease, normal, and mild cognitive

impairment. From the simulation result, the proposed sys-

tem obtained better performance compared with the

existing systems and showed 3–11% improvement in

recognition accuracy.
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Introduction

Alzheimer’s disease is a degenerative brain disorder, which

leads to memory loss, poor language or problem solving

and thinking, that extremely affects the individual’s daily

life [1, 2]. Presently, the neuroimaging techniques are

extensively used in Alzheimer’s disease recognition and

classification that delivers a way for physicians to inves-

tigate the functional and structural changes in the brain

[3, 4]. The most commonly used imaging modalities in

Alzheimer’s disease recognition are magnetic resonance

imaging (MRI), functional MRI, positron emission

tomography, diffusion tensor imaging, etc. [5, 6]. Among

the available imaging modalities, MRI scan gains more

attention among the researchers, because of its easy access

in the clinical settings, and the functional and structural

changes in the brain related to Alzheimer’s disease are non-

invasively evaluated [7–9]. However, the manual analysis

of Alzheimer’s disease by the clinicians may not be

accurate and consumes more time for detection [10]. So,

the automatic recognition of Alzheimer’s disease has made

an impression in the research community [11, 12]. In recent

decades, several methods are developed by the researchers

for Alzheimer’s disease detection [13–15].

T. Altaf et al. [16] developed a new automated system

for Alzheimer’s disease detection and classification. In this

literature, the texture feature descriptors like histogram of

gradient, gray level co-occurrence matrix, local binary

pattern, and scale invariant feature transform were applied

for extracting the features from the brain images.

Further, the classification phase was validated with

dissimilar approaches like decision tree, k-nearest neighbor

(KNN), support vector machine (SVM), and ensemble

classifiers in order to classify the images as three classes;

normal, MCI, and Alzheimer’s disease. Still, the semantic
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space between the extracted texture features was very high

that leads to poor classification of the images. D. Jha et al.

[17] presented a supervised system for Alzheimer’s disease

recognition on the basis of PCA, feed forward neural net-

work (FNN), and dual tree complex wavelet transform

(DTCWT). However, FNN classifier was related to an

application domain, so it was limited to static concerns due

to its feed forward structure. D. Jha et al. [18] developed a

system for Alzheimer’s disease detection on the basis of

DTCWT, PCA, linear discriminant analysis (LDA), and

ensemble classifier. In this literature, the DTCWT method

was utilized for extracting the feature vectors from the

acquired images. Then, PCA and LDA were employed for

lessening the dimension of the features. Finally, the

extracted feature vectors were classified using ensemble

classifier in order to distinguish the healthy and Alzhei-

mer’s disease patients. The computational complexity of

the developed system was increased by combining more

dimensional reduction methods.

J. Samper-Gonzalez et al. [19] used statistical para-

metric mapping12 and positron emission tomography-par-

tial volume correction software’s for image pre-processing.

Next, the region and voxel features were extracted from the

pre-processed images. In addition, SVM, logistic regres-

sion, and random forest were applied to distinguish the

normal, MCI, and Alzheimer’s disease patients. The

experimental result validated that the developed system

was only suitable for single modality classification prob-

lem. V. Sachnev, and S. Suresh, [20] implemented a

diagnosis system for Alzheimer’s disease identification

based on extreme learning machine (ELM) and sample-

balanced genetic algorithms. The ELM algorithm includes

a few issues like imbalanced class distribution, and over-

fitting problem in the medical image applications. S.H.

Wang et al. [21] developed a new Alzheimer’s disease

detection system based on wavelet entropy, multilayer

perceptron, and biogeography-based optimization. In this

literature, the interclass variation criterion was used for

selecting single slice from the three-dimensional volu-

metric data. The wavelet transform generates same size of

coefficients as original three-dimensional brain image that

causes a burden to the consequent analysis.

Y. Zhang et al. [22] presented a system for diagnosing

Alzheimer’s disease automatically from MRI scans. Ini-

tially, image processing was accomplished using spatial

normalization and skull stripping. Secondly, one axial slice

was selected from the volumetric images and then sta-

tionary wavelet entropy was used to extract the texture

features. Lastly, a single hidden layer neural network was

utilized for classifying Alzheimer’s disease patients and

normal controls [23]. However, single hidden layer neural

network was not stable for medical image classification,

where it fluctuates among different runs. H. Nawaz et al.

[24] developed an Alzheimer’s disease detection model

based on pre-trained AlexNet. In this literature, deep

learning features were extracted from convolutional neural

network (CNN). In the experimental phase, the developed

model outperformed the machine learning techniques by

means of classification accuracy. Hence, the developed

model requires a large database for extracting the deep

learning features that leads to overfitting and class imbal-

ance concerns [25]. H.S. Suresha, and S.S. Parthasarathy

[26] introduced a new automated system for Alzheimer’s

disease detection. Initially, median filter was applied for

denoising the collected images from OASIS dataset. Fur-

ther, fast-independent component analysis (Fast-ICA)

along with Otsu multilevel thresholding was developed for

brain tissue segmentation. One of the main issues in Fast-

ICA with Otsu multilevel thresholding approach was it

includes more outliers that results in misclassification. To

address the above-mentioned concerns, a new deep learn-

ing system was proposed in the present research for

enhancing the performance of Alzheimer’s disease

detection.

In the present research, the brain images are acquired

from two databases such as OASIS and NIMHANS. After

the acquisition of brain images, pre-processing is accom-

plished by normalization and CLAHE techniques. The

major benefit of normalization technique is that it brings

the range of intensity value to the normal distribution that

makes the image looks better for the visualizer. Addition-

ally, CLAHE technique estimates several histograms for

redistributing the lightness of the image pixel values, which

enhances the color contrast and edges of the brain images.

After image denoising, DWT technique is used for

extracting the feature vectors from the denoised brain

images. DWT technique effectively reveals the local fea-

tures of the brain images, which helps in the reduction of

feature degradation. After feature extraction, PPCA is

developed to lessen the dimension of the extracted features.

Usually, PPCA uses only a limited number of feature

vectors for representing the data that significantly diminish

the ‘‘curse of dimensionality’’ issue. Then, the output of

PPCA is given as the input for LSTM classifier to classify

the brain images as normal, MCI, and Alzheimer’s disease.

Finally, the performance of the proposed system is com-

pared with the prior systems in terms of false omission rate

(FOR), false discovery rate (FDR), sensitivity, error rate,

accuracy, and specificity. The simulation results showed

that the proposed system obtained 98.78% and 95.88% of

classification accuracy on OASIS and NIMHANS datasets.
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The graphical illustration of the proposed system is rep-

resented in Fig. 1.

Methods

The proposed system majorly contains five phases; brain

image datasets, image denoising, transformation, dimen-

sional reduction, and classification. The detailed explana-

tion about each phase is given as follows;

Brain Image Datasets

In this research, OASIS and NIMHANS (real time) datasets

are utilized to acquire the brain images. The OASIS dataset

comprises of 416 individuals (whose age ranges from 18 to

96). In this research, totally 126 individuals are considered

that includes 98 healthy subjects and 28 Alzheimer’s dis-

ease patients. The statistical information about OASIS

dataset is detailed in Table 1. OASIS dataset contains

information about the subject’s demographics such as

number of patients, education, socioeconomic status, age,

gender, Mini Mental State Examination (MMSE) score,

and Clinical Dementia Rating (CDR). MMSE is a ques-

tionnaire test, which is utilized for monitoring the dementia

and cognitive impairment. Similarly, CDR is used to

measure the severity of dementia on the basis of individual

care, community affairs, orientation, residence and hob-

bies, and memory [27]. The sample images of OASIS

dataset are represented in Fig. 2.

Similarly, the NIMHANS dataset comprises of 99

individuals (60 normal controls and 39 Alzheimer’s dis-

eases patients), whose age ranges from 55–87 years. In the

undertaken dataset, all the individuals are assessed on

NNB-E that contains the tests for working memory, visual

and verbal spatial memory, executive function, construc-

tion, and language [28]. The sample images of NIMHANS

dataset are denoted in Fig. 3.

Image Pre-Processing

After collecting the brain images, pre-processing is per-

formed using normalization and CLAHE techniques. Ini-

tially, image normalization is applied to alter the image

pixel intensity values to improve the quality of acquired

brain images by lessening the machinery and impulse

noises from the brain images. Then, find the deformations

and alternations occurred in the brain images due to

imprecise image capture. During image normalization, the

acquired brain image is converted into pre-determined

Fig. 1 Flow diagram of the

proposed system
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variables [29]. The formula of image normalization is

mathematically denoted in Eq. (1).

IN ¼ 1 �M minð Þ þ new Max � new Min

Max � Min
þ new Min

ð1Þ

where I is represented as input brain image, IN is indicated

as normalized image, new Max � new Min is stated as

intensity range of normalized image, and Min ¼
0; and Max ¼ 255 is indicated as pixel intensity range of

input brain image. The sample normalized brain images of

OASIS and NIMHANS datasets are indicated in Figs. 4

and 5.

After image normalization, CLAHE technique is used to

further enhance the quality of normalized images in order

to achieve the detailed information about the images. The

CLAHE technique enhances the local contrast and the

definitions of edges in every region of an image. Initially,

the normalized brain images are divided into non-over-

lapping contextual regions, named as sub-images or blocks

[30, 31]. Generally, the CLAHE technique consists of two

key parameters such as clip limit and block size. Hence, the

clip limit is used to smooth the low intensity pixel values

and the block size improves the color contrast of the

grayscale images. Additionally, the block size and clip

limit identify the maximum entropy curvature in order to

provide good quality of images using image entropy. Step-

by-step process of CLAHE technique is detailed as follows.

At first, the input variables are initialized for image

enhancement such as distribution parameter type, number

of regions in row and column direction, clip-limit, and

dynamic range (no of bins utilized in histogram transfer

function).

The normalized brain images are divided into blocks or

sub-images and then employ gray level mapping and

clipping in the sub-images.

The number of image pixels is equally divided into gray

levels in the contextual regions. Therefore, the average

number of image pixels is estimated by utilizing Eq. (2).

navg ¼ nCR � yp � nCR � xp
ngrey

ð2Þ

After estimating the actual clip-limit, Eq. (2) is updated

as shown in Eq. (3).

nCL ¼ navg � nCLIP ð3Þ

where navg is indicated as average number of image pixels,

ngray is represented as number of gray levels in the con-

textual regions, nCR � xp and nCR � yp are denoted as

number of pixels in x and y directions of the contextual

regions.

At last, incorporate the gray-level mapping using four

pixel clusters, where the resultant image is the enhanced

image. The enhanced brain images of OASIS and NIM-

HANS datasets are specified in Figs. 6 and 7.

Table 1 Description about OASIS dataset

Factor Alzheimer’s diseases Healthy control

Number of patients 28 98

Education 2.57 ; 1.31 3.26 ; 1.31

Age (years) 77.75 ; 6.99 75.91 ; 8.98

MMSE score 21.67 ; 3.75 28.95 ; 1.20

Socioeconomic status 2.87 ; 1.29 2.51 ; 1.09

CDR 1 0

Gender (male/female) 9/19 26/72

Fig. 2 Sample images of

OASIS dataset a) normal, b)

MCI, and c) Alzheimer’s

diseases

Fig. 3 Sample images of NIMHANS dataset a) normal, and b) MCI
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Image Transformation

After denoising the brain images, image transformation is

accomplished using DWT approach for revealing the local

features of the enhanced images that helps in eliminating

the irrelevant image features. The two-dimensional DWT

approach includes a few advantages like low computation,

good energy compression, and low redundancy. The two-

dimensional DWT approach is a ‘‘rescaled square-shaped

function’’ that generates a wavelet family for separating the

low-frequency image components from the high-frequency

image components [32]. Initially, transform the brain

images into sub-images in different image resolution levels

for preserving the both high- and low-level frequency

information that assists DWT to extract the useful data

from the denoised brain images [33]. The square integral

function f(x) and the wavelet transforms are determined as

the inner product f and the real valued function R(x) that

are mathematically denoted in Eq. (4).

w f s; sð Þ½ � ¼ f ;Rk
s;t

� �
¼

Z1

�1

f xð ÞRk
s;t xð Þdx ð4Þ

where Rk
s;t xð Þ ¼ 1ffiffi

s
p

Rk
s;t x�rð Þ

.
s

� �
is represented as wavelet

family, s 2 s; z and k 2 v; h; df g are stated as scale,

translation, and orientation parameters. The orientation

parameters v, h, and d are indicated as vertical, horizontal,

and diagonal directions. In the next segment, the Dyadic

wavelet decomposition is undertaken, where s ¼ 2 j and

s ¼ 2 j; n; j; n 2 z. Then, the scaling and wavelet families

are generated by using the wavelet function R(x), and

scaling function n xð Þ that are mathematically denoted in

Eqs. (5) and (6).

Fig. 4 Sample normalized

images of OASIS dataset

Fig. 5 Sample normalized images of NIMHANS dataset

Fig. 6 Enhanced brain images

of OASIS dataset

Fig. 7 Enhanced brain images of NIMHANS dataset
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Rk
j;n xð Þ ¼ 1ffiffiffiffiffi

2 j
p Rk x� 2 j:n

2 j

� �

nkj;n xð Þ ¼ 1ffiffiffiffiffi
2 j

p nk
x� 2 j:n

2 j

� �

Generally, the orthonormal subspaces are related to the

resolution 2j. Henceforth, the wavelet atom is estimated by

utilizing the mother atoms Rh, Rv, and Rd, which are

determined as tensor product of two-dimensional n xð Þ and

R(x) that are stated in Eqs. (7) and (8).

n xð Þ ¼ n x1ð Þn x2ð Þ;Rh xð Þ ¼ R x1ð ÞR x2ð Þ

Rv xð Þ ¼ n x1ð ÞR x2ð Þ;Rd xð Þ ¼ R x1ð Þn x2ð Þ

The two-dimensional DWT technique is executed by

utilizing filter banks and down-samplers. Normally, the

digital filter bank comprises of high-pass (g) and low-pass

(h) filters, and the number of filter bank is assumed as per

the resolution in the wavelet configuration. For instance,

the enhanced brain image A2jþ1 f at resolution 2jþ1 is

transformed into four sub-bands in the frequency domain.

In the available four sub-bands, three sub-bands are brain

images Dv
2i
f ;Dd

2i
f and Dh

2i f at the resolution of 2 j in

vertical, diagonal, and horizontal directions. The

remaining one sub-band is approximation image A2 j f ,

which is in the coarse resolution format. Though, the entire

brain image A2jþ1 f is mathematically indicated in Eq. (9).

A2jþ1 f ¼ Dh
2i f þ Dv

2i f þ Dd
2i f þ A2 j f ð9Þ

The transformed brain images are in the form of two-

dimensional orthogonal wavelet.

The wavelet transformation outcome is resultant into

four orthogonal sub-bands such as low-high, high-high,

low-low, and high-low that corresponds to the sub-images

Dv
2i
f ;Dd

2i
f and Dh

2i f and A2 j f . A sample wavelet trans-

formed brain image is stated in Fig. 8, and the final result

of DWT is represented in Fig. 9.

Feature Dimensional Reduction

After feature extraction, dimensional reduction is per-

formed by applying PPCA [34]. Let us consider xi ¼
xi1; . . .xip
� �T

as the feature vectors, which are extracted

from the DWT for the ith subject i ¼ 1; . . .n. The proba-

bilistic representation of PCA is mathematically stated in

Eq. (10).

xi ¼ lþ wuiþ 2i; i ¼ 1; . . .n

where ui is denoted as principal components, and w is

stated as p 9 q matrix with elements

wjh; j ¼ 1; . . .p; h ¼ 1; . . .q. In addition, the term u is

stochastically independent from 2, and it is mathematically

denoted in Eq. (11).

ui �@ 0; Iq
� �

where Iq is indicated as identity matrix of order q. In

addition, the error is assumed to be zero-centered Gaussian

with covariance matrix W;2i �@ 0;Wð Þ. Then, the

multivariate distribution is obtained by using Eq. (12),

xi �@ l;Cð Þ;C ¼ wwT þW

Also, assume W ¼ wIp;w 2 <þ, so the elements of xi
are conditionally independent to given ui. The parameters

l ¼ l1; . . .lp
� �T

allow location shift fixed effect, and the

marginal log likelihood is mathematically denoted in

Eq. (13).

l h;Xð Þ ¼ � n

2
p log 2pð Þ þ log Cj j þ tr C�1S

� �	 


where S ¼ 1
n

� �Pn
i¼1 xi � lð Þ xi � lð ÞT and the parameter

h ¼ p;w;wð Þ are estimated by the maximum likelihood

estimation Eqs. (14), (15), and (16).

l̂ ¼ 1

n
XT1n

ŵ ¼ Hq Dq � wIq
� �1=2< ð15Þ

ŵ ¼ 1

p� q

Xp

j¼qþ1
dj ð16Þ

where X ¼ xið ÞT is denoted as response matrix, ln is stated

as n� 1 vector, Hq is indicated as principal eigenvectors of

the covariance matrix, and < is represented as orthogonal

rotation matrix. At last, the individual score is predicted by

utilizing best linear prediction as shown in Eq. (17).

Fig. 8 Sample wavelet transformed brain image

Fig. 9 Final result of DWT
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û ¼ E ujxð Þ ¼ wTwþW
� ��1

wT x� lð Þ ð17Þ

Classification

After dimensionality reduction, classification is accom-

plished by LSTM for classifying the images as normal,

MCI, and Alzheimer’s disease [35]. Usually, LSTM work

based on feature learning that significantly enhances the

performance of mapping compared with the manually

predicted values. For feature learning, stack auto-encoder

is used to analyze the variations in data. In LSTM, the stack

auto-encoder contains three layers such as input, hidden,

and output layers. Here, the selected feature length is

5 9 4, which is the size of the input layer. In LSTM, the

temporal state, cell of multiplicative gathering unit, and

couple of versatile are applied for controlling the data

stream in memory block [36, 37].

At first, the consistent error carousels are activated by

self-associated direct unit for describing the memory cell

state. The multiplicative gateways along with consistent

error carousels are used to find the error constant of the

system. Then, the forget gate is included in memory block

to improve the bound development and to prevent the inner

cell values. Restart the memory block, once the consistent

error carousel weight replaces the multiplicative forget

gateway activation and the data stream is outdated. The

LSTM architecture is denoted in Fig. 10.

The input of the model is represented as

x ¼ x1; x2; ::::xTð Þ, and the output sequence is indicated as

y ¼ y1; y2; . . .yTð Þ, where T is stated as recognition period.

Based on prior information, the optimal features are rec-

ognized without affecting the previous steps, which is

deliberated as a major benefit of LSTM [38]. In order to

accomplish this objective, the travel time is iteratively

calculated by utilizing Eqs. (18–23).

it ¼ H Wixxt þW=mt�1 þWicCt�1 þ bið Þ ð18Þ

ft ¼ H WfxXt þWfmmt�1 þWfcCt�1 þ bf
� �

ð19Þ

Ct ¼ ftHCt�1 þ itUg WcxXt þWcmmt�1 þ bcð Þ ð20Þ
Ot ¼ H WaxXt þWommt�1 þWocCt þ boð Þ ð21Þ
mt ¼ OtUh Ctð Þ ð22Þ
yt ¼ Wymmt þ by ð23Þ

where H :ð Þ is denoted as standard logistic sigmoid function

and U is represented as vector scalar product. Hence, the

sigmoid function H :ð Þ is calculated by applying Eq. (24).

H Xð Þ ¼ 1

1 � ex
ð24Þ

where ct;mt
is signified as activation vectors of every cell

and memory blocks, b is indicated as bias vector, and W is

indicated as weight matrices. Additionally, H :ð Þ is stated as

sigmoid function of centered logistic that ranges from

[ - 3, 3], which is indicated in Eq. (25).

H Xð Þ ¼ 4

1 � ex
� 3 ð25Þ

where C :ð Þ is denoted as sigmoid function of centered

logistic that ranges from [2,-2], which is defined in

Eq. (26).

C Xð Þ ¼ 2

1 � ex
� 2 ð26Þ

By adjusting the truncated back-propagation and real-

time recurrent learning, the LSTM classifier is trained.

Before entering into linear consistent error carousel, the

truncated errors reached the output of memory cell and the

square errors are limited. For time management in LSTM

classifier, the self-assertive time slacks are developed with

long dependency [39]. The global features are selected

utilizing PPCA and it is given as the input to LSTM

classifier. In this work, the weight of neural system is

controlled by Adam optimizer, because it is productive in

computation, easy to implement, invariant to rescaling

diagonal gradients, and requires fewer memory space. The

parameter setting of LSTM classifier is given as follows;

hidden unit is 1000, epoch is 100, and the Mini batch size is

27. In this research study, MATLAB (2018a) software is

used for experimental simulation with the system

requirements; Intel (R) Core (TM) i5 CPU @ 3.10 GHz

and 8 GB (RAM). In this scenario, the proposed system

performance is evaluated by means of FOR, FDR, error

rate, sensitivity, accuracy, and specificity. The general

formula for estimating FOR, FDR, sensitivity, accuracy,

error rate, and specificity are indicated in Eqs. (27), (28),

(29), (30), (31), and (32).

FOR ¼ FN

TN þ FN
� 100 ð27Þ

FDR ¼ FP

TP þ FP
� 100 ð28Þ

Sensitivity ¼ TP

FN þ TP
� 100 ð29Þ

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
� 100 ð30Þ

Error Rate ¼ 100 � Accuracy ð31Þ

Specificity ¼ TN

FP þ TN
� 100 ð32Þ

where TP is indicated as true positive, FP is stated as false

positive, TN is specified as true negative, and FN is denoted

as false negative.
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Experimental Results

In the experimental result section, the proposed system is

compared with a few existing systems (D. Jha et al. [17], D.

Jha et al. [18], V. Sachnev, and S. Suresh, [20], S.H. Wang

et al. [21], Y. Zhang et al. [22], and H.S. Suresha, and S.S.

Parthasarathy [26]) on OASIS database to validate the

efficiency of the proposed system. The quantitative and

comparative study of the proposed system is given as

follows;

Quantitative Study on OASIS Dataset

In this subsection, OASIS dataset is used for analyzing the

performance of the proposed system. In Table 2, the per-

formance of the proposed system is assessed by means of

specificity, sensitivity, and classification accuracy. Here,

the performance valuation is done for 75 images (25 ima-

ges for normal class, 25 images for MCI class, and the

remaining 25 images for Alzheimer’s disease class) with

20% testing of images and 80% training of images. In

addition, the performance validation is done with dissimilar

classification methods such as LSTM, deep neural network

(DNN), and convolutional neural network (CNN). From

the experimental investigation, the sensitivity of LSTM is

98.43% and the comparative deep learning classification

methodologies (DNN and CNN) achieved 93.78% and

90.14% of sensitivity. Similarly, the specificity value of

LSTM is 98.01% and the comparative methodologies

(DNN and CNN) attained 92.49% and 90.89% of speci-

ficity. Furthermore, the accuracy of LSTM methodology is

98.78%, and the available deep learning classifiers (DNN

and CNN) achieved 92.29% and 91.48% of accuracy. The

graphical comparison of the proposed system by means of

accuracy, specificity, and sensitivity on OASIS dataset is

denoted in Fig. 11.

In Table 3, the performance of the proposed system is

assessed by means of error rate, FOR, and FDR. Corre-

spondingly, the error rate of LSTM approach is 1.22% and

the comparative deep learning classification methodologies

(DNN and CNN) attained 7.71% and 8.52% of error rate.

Likewise, the FOR value of LSTM is 2.12% and the

comparative methodologies (DNN and CNN) attained

8.56% and 12.23% of FOR value. In addition, the FDR

value of LSTM approach is 1.14% and the undertaken deep

learning classifiers (DNN and CNN) achieved 7.97% and

9.12% of FDR value. The graphical comparison of the

proposed system in terms of error rate, FOR, and FDR on

OASIS dataset is indicated in Fig. 12.

As mentioned above, feature dimensionality reduction

and classification are the integral steps in automatic

recognition and classification of Alzheimer’s disease. After

feature extraction, dimensionality reduction is performed to

lessen the ‘‘curse of dimensionality’’ issue, where the

dimensionally reduced feature vectors are fit for better

Alzheimer’s disease classification that is shown in Table 4.

In this consequence, the performance of the proposed

system is validated with dissimilar methods such as LDA,

PCA, Independent Component Analysis (ICA), Kernel-

PCA (KPCA), and PPCA. The experimental investigation

shows that the PPCA algorithm shows higher performance

in terms of FOR, FDR, sensitivity, classification accuracy,

error rate, and specificity on OASIS dataset. Hence, the

PPCA algorithm improved the recognition accuracy up to

2–24% compared with other algorithms in Alzheimer’s

disease detection and classification.

Fig. 10 Architecture of LSTM

architecture
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Quantitative study on NIMHANS dataset

In this segment, NIMHANS dataset is used to analyze the

performance of the proposed system. In Table 5, the pro-

posed system performance is assessed by means of speci-

ficity, sensitivity, accuracy, error rate, FOR, and FDR.

Here, the performance evaluation is done for 50 images (25

images for normal class, and 25 images for Alzheimer’s

disease class) with 20% testing and 80% training of the

brain images. From the experimental inspection, the

recognition accuracy of LSTM is 95.88%, and the existing

deep learning classification approaches (DNN and CNN)

achieve 87.12% and 90.75%. Correspondingly, the speci-

ficity, sensitivity, error rate, FOR, and FDR value of LSTM

approach is 94.15%, 93.02%, 4.12%, 6.32%, and 5.79%.

Hence, the undertaken classification methodologies (DNN

and CNN) achieve minimum sensitivity and specificity,

and maximum error rate, FOR, and FDR value compared

with LSTM classifier. Graphical comparison of the pro-

posed system by means of sensitivity, accuracy, specificity,

error rate, FOR, and FDR on NIMHANS database is rep-

resented in Figs. 13 and 14.

In Table 6, the proposed system performance is ana-

lyzed with dissimilar dimensionality reduction algorithms

on NIMHANS dataset. From the inspection, the recogni-

tion accuracy of PPCA is 95.88%, and the existing

approaches (ICA, LDA, PCA, and KPCA) achieve 71.35%,

75%, 91.87%, and 85.46% of accuracy. Similarly, the

specificity, sensitivity, error rate, FOR, and FDR value of

PPCA are superior compared with other approaches.

Though, the PPCA includes a few key benefits like effec-

tively dealing with missing values in the dataset, and

appropriate for model class conditional densities.

Comparative Study

Table 7 indicates the comparative study of the proposed

and the existing systems performance. D. Jha et al. [17]

developed a new supervised system for Alzheimer’s dis-

ease recognition on the basis of PCA, FNN, and DTCWT,

where the performance of the developed system was vali-

dated on OASIS dataset. The experimental outcome

showed that the developed system attained 90.06% of

accuracy, and 92% of sensitivity in Alzheimer’s disease

recognition and classification. In addition, D. Jha et al. [18]

presented a new framework for Alzheimer’s disease clas-

sification based on DTCWT, PCA, LDA, and ensemble

classifier. The extensive experiments showed that the

developed system achieved 95.72% of accuracy and

96.59% of sensitivity in Alzheimer’s disease recognition

and classification on OASIS dataset. V. Sachnev, and S.

Suresh, [20] presented a diagnosis framework for Alzhei-

mer’s diseases identification on the basis of ELM- and

sample-balanced genetic algorithm. Extensive experiments

were performed on OASIS dataset, and the developed

framework attained 87% of recognition accuracy.

S.H. Wang et al. [21] implemented a new Alzheimer’s

disease detection system on the basis of wavelet entropy,

multilayer perceptron, and biogeography-based optimiza-

tion. Extensive experiments showed that the developed

system achieved 92.40% of classification accuracy and

Table 2 Performance validation by means of accuracy, specificity,

and sensitivity on OASIS dataset

Classifier Sensitivity (%) Specificity (%) Accuracy (%)

DNN 93.78 92.49 92.29

CNN 90.14 90.89 91.48

LSTM 98.43 98.01 98.78

Fig. 11 Graphical comparison of the proposed system in light of

accuracy, specificity, and sensitivity on OASIS dataset

Table 3 Performance validation by means of error rate, FOR, and

FDR on OASIS dataset

Classifier Error rate (%) FOR (%) FDR (%)

DNN 7.71 8.56 7.97

CNN 8.52 12.23 9.12

LSTM 1.22 2.12 1.14

Fig. 12 Graphical comparison of the proposed system in light of

error rate, FOR, and FDR on OASIS dataset
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92.14% of sensitivity on OASIS database. Y. Zhang et al.

[22] presented a new machine learning framework to

diagnose Alzheimer’s diseases from MRI scans. At first,

skull stripping and spatial normalization were used for

denoising the collected images. Next, stationary wavelet

entropy was utilized to extract the texture feature vectors.

Finally, single hidden layer neural network with predator

prey particle swarm optimization methodology was used to

classify the Alzheimer’s disease patients and normal con-

trols. Simulation outcome showed that the developed

framework achieved 92.73% of classification accuracy, and

92.69% of sensitivity on OASIS database. H.S. Suresha,

and S.S. Parthasarathy [26] applied median filter and Fast-

ICA with Otsu multilevel thresholding for automated

Alzheimer’s disease detection. Extensive experiments

showed that the developed system obtained 79% of sensi-

tivity on OASIS database. Compared with these existing

systems, the proposed system achieved better classification

accuracy of 98.78% and sensitivity of 98.01%. In the

proposed system, the feature dimensionality reduction is

the fundamental part of Alzheimer’s disease recognition

and classification. Every brain MRI images contain several

feature vectors that lead to ‘‘curse of dimensionality’’ issue.

So, the feature dimensionality reduction PPCA algorithm

plays a crucial role in optimizing the feature vectors, which

is appropriate to achieve better disease classification.

Conclusion

An effective deep learning-based supervised system is

proposed in this article for the automatic recognition and

classification of Alzheimer’s disease. The purpose of this

work is to classify the brain images as normal, MCI, and

Alzheimer’s disease by proposing a proper feature

dimensional reduction and classification algorithm. In this

study, the PPCA algorithm is employed for lessening the

dimension of the extracted feature values. The obtained

active discriminative feature vectors are classified by

applying a deep learning classifier (LSTM). Compared

Table 4 Performance valuation of the proposed system with dissimilar dimensionality reduction algorithms on OASIS dataset

Methods Accuracy (%) Sensitivity (%) Specificity (%) Error rate (%) FOR (%) FDR (%)

ICA 74.24 71.05 72.73 25.76 23.29 27.05

LDA 78.19 76.02 77.79 21.81 20.49 25.07

PCA 96.34 96.21 97.35 3.66 3.82 2.92

KPCA 82.97 83.51 81.19 17.03 12.14 13.26

PPCA 98.78 98.01 98.01 1.22 2.12 1.14

Table 5 Performance validation in terms of sensitivity, accuracy, specificity, error rate, FOR, and FDR on NIMHANS dataset

Classifier Sensitivity (%) Specificity (%) Accuracy (%) Error rate (%) FOR (%) FDR (%)

DNN 89.19 88.74 87.12 12.88 15.56 12.19

CNN 89.78 91.57 90.75 9.25 10.35 13.54

LSTM 93.02 94.15 95.88 4.12 6.32 5.79

Fig. 13 Graphical comparison of the proposed system by means of

accuracy, specificity, and sensitivity on NIMHANS dataset

Fig. 14 Graphical comparison of the proposed system by means of

error rate, FOR, and FDR on NIMHANS dataset
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with the existing systems, the proposed system achieved a

better performance in Alzheimer’s disease recognition and

classification in terms of sensitivity, accuracy, specificity,

error rate, FOR, and FDR. From the experimental investi-

gation, the proposed system obtained 98.78% of classifi-

cation accuracy on OASIS dataset and 95.88% of accuracy

on NIMHANS dataset, which are higher compared with the

prior systems. In future work, an optimization algorithm is

included in the proposed system to improve the perfor-

mance of Alzheimer’s disease recognition and classifica-

tion. In addition to this, the proposed system is applied to

multi-modal data (functional MRI, PET, and MRI) to fur-

ther improve the accuracy of the brain disease diagnosis.
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