A NOTE ON THREE ALLIED PROBLEMS OF RAMANUJAN

BY M. VENKATA RAMA AYYAR

(Department of Mathematics, Central College, Bangalore)

Received December 1, 1940
(Communicated by Prof. K. S. K. Iyengar)

1. S. Ramanujan had set the following three problems:—

Show that

\[(6a^2 - 4ab + 4b^3)^3 = (3a^2 + 5ab - 5b^2)^3 + (4a^2 - 4ab + 6b^2)^3\]
\[+ (5a^2 - 5ab - 3b^2)^3\]

and find other quadratic expressions satisfying similar relations.\(^1\) (R. I)

Solve, in integers, \(x^3 + y^3 + z^3 = 1\) and deduce

(i) \(6^3 + 8^3 = 9^3 - 1\)
(ii) \(9^3 + 10^3 = 12^3 + 1\)
(iii) \(135^3 + 138^3 = 172^3 - 1\)

(iii) \(791^3 + 812^3 = 1010^3 - 1\)
(iv) \(11161^3 + 11468^3 = 14258^3 + 1\)
(v) \(65601^3 + 67402^3 = 83802^3 + 1^2\)

(R. II)

Solve, in integers, \(x^3 + y^3 + z^3 = \mu^6\) and deduce that

(i) \(6^3 - 5^3 - 3^3 = 2^6\)
(ii) \(8^3 + 6^3 + 1^3 = 3^6\)
(iii) \(12^3 - 10^3 + 1^3 = 3^6\)

(iv) \(46^3 - 37^3 - 3^3 = 6^6\)
(v) \(174^3 + 133^3 - 45^3 = 14^6\)
(vi) \(1188^3 - 509^3 - 3^3 = 34^6\) (R. III)

(R. I) was solved by S. Narayan\(^4\) who, by replacing 6, 5, 4, 3 in the coefficients above by \(l, m, n, p\) obtained \(l = \lambda (\lambda^3 + 1), m = 2 \lambda^3 - 1, n = \lambda (\lambda^3 - 2)\) and \(p = \lambda^3 + 1\), which set, with \(\lambda = 2\), reduces to (R. I). His values are not completely general and are just similar to Vieta’s formulæ.\(^5\)

\(^1\) A more general investigation of this and similar problems will be found in the article on “Types of solutions of \(x^3 + y^3 + z^3 = 1\) in integers,” vide J.I.M.S., New series, 4, 2.

\(^2\) Vide J.I.M.S., 5, old series, p. 39, Q. 441.

\(^3\) Ibid., 7, old series, p. 160, Q. 681.

\(^4\) Ibid., 7, old series, Q. 661

Vieta gave \(x = B (B^3 - 2D^3), \ y = D (2B^3 - D^3), \ z = B (B^3 + D^3) \) and \(w = -D (B^3 + D^3) \) as satisfying \(x^3 + y^3 + z^3 + w^3 \). If, in this, \(D = 1, \ B = \frac{1}{\lambda} \), we derive Narayan’s set. A very particular solution of (R. II) was given by N. B. Mitra\(^8\) who gave \(x = 3a (1 - 3a^2), \ y = 9a^4, \ z = 1 - 9a^3 \) as a solution of \(x^3 + y^3 + z^3 = 1 \) and for \(a = \pm 1 \), verified (i) and (ii) in (R. II). Mitra also solved (R. III) giving two distinct solutions; yet, he left (vi) in (R. III) unverified. In the present note, an attempt is made to give an easy method of completely solving all the three problems, verifying every numerical example.

§ 2. Consider \(x^3 + y^3 = k^3 (z^3 + w^3) \). Take \(k = 2 \). Put \(x + y = p, \ x - y = q, \ z + w = r, \ z - w = s \) (all integers). We get \(p (p^2 + 3q^2) = 8r (r^2 + 3s^2) \). If \(p = 8r \), then \(q^2 + 21r^2 = s^2 \). One evident solution of this is \(q = a^2 - 21b^2, \ r = 2ab, \ s = a^2 + 21b^2 \). Hence, on substitution and reduction,

\[
(a^2 + 16ab - 21b^2)^3 + (-a^2 + 16ab + 21b^2)^3 = (2a^2 + 4ab + 42b^2)^3
\]

\[
+ (-2a^2 + 4ab - 42b^2)^3
\]

(I)

It may be remarked here that, in (I), if \(a = d, \) and \(b = 1 \) we get Young’s identity\(^7\); multiplying both sides of (I) by \(-27\), putting \(\beta \) for \(3a \) and \(a \) for \(9b \), we get Gerardin’s identity.\(^8\) Replace \(a \) in I by \(3(a + b) \), and \(b \) by \((a - b) \), you obtain (R. I).

§ 3. Now, \(x = a^2 + 16ab - 21b^2 \) in (I), i.e., \(x = (a + 8b)^2 - 85b^2 \). Choose \(a \) and \(b \) in such a manner that \(\frac{a + 8b}{b} \) is numerically equal to a convergent of the C. F. for \(\sqrt{85} \), viz., \(9 + \frac{1}{4 + \frac{1}{1 + \frac{1}{1 + \frac{1}{4 + \frac{1}{18}}}}} \) so that, from the first period itself, we get

\(^6\) Vide J.I.M.S., 13, old series, pp. 15 and 17.

\(^7\) Vide Dickson: History of the Theory of Numbers, 2, p. 559

\(^8\) Ibid., 2, p. 559.
of these, (II·1), (II·2), (II·7), (II·8) and (II·9) are (ii) (iii), (iv), (v) and (vi) in (R·II). (i) in (R·I) is got by combining (II·1) with Euler's identity in the form $6^3 + 8^3 = 12^3 - 10^3$. (II·10) is extra.

§ 4. Instead of trying to reduce any one of x, y, z, w to unity, let us try to make y, z, w simultaneously multiples of x. Assume

$$-a^2 + 16 ab + 21 b^2 = m (a^2 + 16 ab - 21 b^2).$$

This gives

$$\frac{a}{b} = -\frac{8 (m - 1)}{m + 1},$$

where

$$85 m^2 - 86 m + 85 = n^2.$$

Take

$$a = -8 (m - 1) + n, \quad b = m + 1.$$

Then $x = 32 a, \quad y = 32 am, \quad z = 2 a (n + m + 1), \quad w = 2 a (-n + m + 1)$

yielding

$$1^3 + m^3 = \left(\frac{n + m + 1}{8}\right)^3 + \left(\frac{-n + m + 1}{8}\right)^3.$$

Put $m + 1 = 8 \lambda$ and $n = 8 \mu$, we get

$$1 + (8 \lambda - 1)^3 = (\lambda + \mu)^3 + (\lambda - \mu)^3 \quad \{ \text{III} \}$$

where

$$85 \lambda^2 - 32 \lambda + 4 = \mu^2.$$
For

<table>
<thead>
<tr>
<th>λ</th>
<th>μ</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-11</td>
<td>II.1 or R. II.2</td>
</tr>
<tr>
<td>17</td>
<td>-155</td>
<td>II.2 or R. II.3</td>
</tr>
<tr>
<td>99</td>
<td>911</td>
<td>II.7 or R. II.4</td>
</tr>
<tr>
<td>-1395</td>
<td>12863</td>
<td>II.8 or R. II.5</td>
</tr>
<tr>
<td>-8200</td>
<td>-75602</td>
<td>II.9 or R. II.6</td>
</tr>
<tr>
<td>115784</td>
<td>-1067474</td>
<td>II.10</td>
</tr>
</tbody>
</table>

§ 5. Similarly, consider $x^3 + y^3 = 3^3(z^3 + w^3)$.

If, as before, $x = p + q$, $y = p - q$, $z = r + s$, $w = r - s$, and p is taken = $9r$, then $26r^2 = 3s^2 - q^2$. Let $s = 3r + \lambda$. Then $q^2 = (r + 9\lambda)^2 - 78\lambda^2$.

One evident solution is $r + 9\lambda = a^2 + 78b^2$

$$\lambda = 2ab$$

and

$$q = a^2 - 78b^2$$

with

$$r = a^2 - 18ab + 78b^2,$$

$$p = 9(a^2 - 18ab + 78b^2),$$

and

$$s = 3a^2 - 52ab + 234b^2,$$

leading to corresponding expressions for x, y, z, w. Therein, on replacing a by $(8a + 2b)$ and b by a, we derive

$$(a^2 + 17ab - 8b^2)^3 + (8a^2 + ab - 10b^2)^3 = 3^3[(3a^2 - ab + 2b^2)^3 - (2a^2 - 3ab + 4b^2)^3]$$

(IV)

§ 6. Now, $a^2 + 17ab - 8b^2 = \left(a + 17\frac{b}{2}\right)^2 - 321\left(\frac{b}{2}\right)^2$, so that if

$$a + 17\frac{b}{2}$$

$$\pm\frac{b}{2}$$

give a convergent of the C. F. for $\sqrt{321}$, viz., $17 + \frac{1}{1 + \frac{1}{10 + \frac{1}{1 + \frac{1}{34}}}}$, we get, from the first period,
§ 7. Here, take \(y = mx \). Then \(\frac{a}{b} = \frac{-17m + 1 \pm n}{2 (m - 8)} \) where \(n^2 = 321m^2 - 330m + 321 \).

Putting \(a = -17m + 1 + n \),
\[
\frac{b}{2} = 2 (m - 8), \quad \text{and} \quad k = -5n + 85m - 37,
\]
we get \(x = 54k, y = 54mk, z = k(-n + 3m + 3) \) and \(w = k(-n - 3m - 3) \), so that, on further supposing \(m = 9\lambda - 1 \) and \(n = -9\mu \), we have
\[
1^3 + (9\lambda - 1)^3 = \left(\frac{3\lambda + \mu}{2}\right)^3 + \left(\frac{3\lambda - \mu}{2}\right)^3
\]
where \(321\lambda^2 - 108\lambda + 12 = \mu^2 \).

Here, suitable values of \(\lambda \) and \(\mu \) lead to the results (ii), (iii), (iv), (vii), (viii) under (IV).

§ 8. Lastly, take \(x^3 + y^3 = 4^3(z^3 + w^3) \).

Proceeding as before, \(p(p^2 + 3q^2) = 64r(r^2 + 3s^2) \).

Let \(p = 64r \). Then \(1365r^2 + q^2 = s^2 \).

One evident solution is \(q = a^2 - 1365b^2 \)
\[
r = 2ab
\]
and \(\therefore \)
\[
s = a^2 + 1365b^2
\]
\[
p = 128ab.
\]
So that we obtain
\[x = a^2 + 128 ab - 1365 b^2 \]
\[y = -a^2 + 128 ab + 1365 b^2 \]
\[z = a^2 + 2 ab + 1365 b^2 \]
\[w = -a^2 + 2 ab - 1365 b^2 \]
giving
\[x^3 + y^3 = 4^3 (z^3 + w^3). \]
Replacing \(a \) by 21 \(a \) and reducing,
\[(21 a^2 + 128 ab - 65 b^2)^3 + (-21 a^2 + 128 ab + 65 b^2)^3 \]
\[= 4^3 [(21 a^2 + 2 ab + 65 b^2)^3 - (21 a^2 - 2 ab + 65 b^2)^3]. \] (VI)

Here, if we make one of the expressions like 21 \(a^2 + 2 ab + 65 b^2 \) a perfect square, we can verify all the results (R. III) (i) to (vi). For example, with \(a = 13, \ b = -2 \), we obtain the sixth result which was not verified by Mitra, \(viz., -509^3 - 3^3 + 1188^3 = (34)^6. \)

9 This note was the subject-matter of two lectures delivered before the Mathematical Societies of the Central College, Bangalore, and the Presidency College, Madras.