TOTAL NUMBER OF SPECIAL KINDS OF NEIGHBOURHOOD SETS OF GRAPHS

*M.P Sumathi and N. D. Soner

Department of Studies in Mathematics, University of Mysore, Mysore 570006, India

E-mail: sumathideepak@gmail.com, ndsoner@yahoo.co.in

(Received on: 16-03-11; Accepted on: 06-04-11)

ABSTRACT

This paper is concerned with special kinds of neighbourhood sets of graphs \(P_n \) and \(C_n \). The neighbourhood set, the split neighbourhood sets of a graph are considered using a recurrence relation, we give the number of all neighbourhood sets mentioned for the graphs \(P_n \) and \(C_n \).

INTRODUCTION:

In this paper, we consider the path \(P_n \) and cycle \(C_n \) graphs of \(n \) vertices as graphs with \(V(P_n) = \{x_1, x_2, \ldots, x_n\} \), \(E(P_n) = \{x_i, x_{i+1} : 1 \leq i \leq n-1\} \) for \(n \geq 3 \) and \(V(C_n) = \{x_1, x_2, \ldots, x_n\} \), \(E(C_n) = \{x_i, x_{i+1} : 1 \leq i \leq n-1, x_n, x_1\} \) for \(n \geq 3 \). For \(v \in V \), the closed neighbourhood of \(v \) is \(N[v] = \{u \in v : uv \in E(G)\} \cup \{v\} \).

A subset \(S \) of \(V(G) \) is a neighbourhood set of \(G \) if \(G = \bigcup_{v \in S} \langle N(v) \rangle \) where \(\langle N(v) \rangle \) is the subgraph of \(G \) induced by \(N[v] \). The neighbourhood number \(\eta(G) \) of \(G \) is the minimum cardinality of a neighbourhood set of \(G \).

Neighbourhood sets of \(P_n \) and \(C_n \):

The results considered in this section will be used to determine the total number of split neighbourhood sets of \(P_n \) and \(C_n \). To determine the number of all neighbourhood sets of a path of \(n \) vertices, for all \(n \geq 1 \), we introduce the following notations.

\[N(P_n) = \{D \subseteq V(G) : D \text{ is a neighbourhood set of } P_n\} \]

\[N_1(P_n) = \{D \in N(P_n) : X_n \in D\} \]

\[N_2(P_n) = N(P_n) - N_1(P_n) \]

Denoting the cardinalities of the families \(N(P_n), N_1(P_n) \) and \(N_2(P_n) \) respectively by \(N(P_n) \), \(N_1(P_n) \), \(N_2(P_n) \). We obtain the following equality,

\[N(P_n) = N_1(P_n) + N_2(P_n), \quad n \geq 1 \quad \text{(1)} \]

of course \(N(P_n) \) is the total number of neighbourhood sets of a path \(P_n \) on \(n \) vertices. It is easy to see that \(N(P_1) = 1 \), \(N(P_2) = 3 \), \(N(P_3) = 5 \). These inequalities are the initial conditions for the recurrence relation given in the following theorem.
Theorem 1: For \(n \geq 3 \),
\[
\mathcal{N}(P_{n+1}) = \mathcal{N}(P_n) + \mathcal{N}(P_{n-1})
\]

Proof: Assume the \(\mathcal{N} \) is a neighborhood set of \(P_{n+1} \) for \(n \geq 3 \). Then we have three possibilities:

1. If \(X_n, X_{n+1} \in D \), then \(D - \{X_{n+1}\} \in \mathcal{N}_1(P_n) \).
2. If \(X_n \in D \) and \(X_{n+1} \notin D \), then \(D \in \mathcal{N}_1(P_n) \).
3. If \(X_n \notin D \) and \(X_{n-1}, X_{n+1} \in D \), then \(D - \{X_{n+1}\} \in \mathcal{N}_2(P_n) \).

Thus, the number \(\mathcal{N}(P_{n+1}) \) of all neighborhood sets of \(P_{n+1} \) is described by the following equality.

\[
\mathcal{N}(P_{n+1}) = \mathcal{N}_1(P_n) + \mathcal{N}_1(P_{n-1}) + \mathcal{N}_2(P_{n-1})
\]

Applying these equalities in equation (3) to the first of the sum in equation (2), we obtain

\[
\mathcal{N}(P_{n+1}) = \mathcal{N}_1(P_{n-1}) + \mathcal{N}_2(P_{n-1}) + \mathcal{N}_1(P_n) + \mathcal{N}_2(P_n)
\]

Hence \(\mathcal{N}(P_{n+1}) = \mathcal{N}(P_{n-1}) + \mathcal{N}(P_n) \).

The following results concern the total number of neighborhood sets of the cycle \(C_n \) on \(n \) vertices for \(n \geq 4 \). First we introduce the following notations:

\(\mathcal{N}(C_n) = \{D \subseteq V(G) : \mathcal{N} \text{ is a neighborhood set of } C_n \} \).
\(\mathcal{N}_0(c_n) = \{D \in \mathcal{N}(C_n) : (X_1 \in D \text{ and } X_n \notin D) \text{ or } (X_1 \notin D \text{ and } X_n \in D) \} \)
\(\mathcal{N}_1(c_n) = \{D \in \mathcal{N}(C_n) : X_1, X_n \in D \} \)

By \(\mathcal{N}(C_n) \), \(\mathcal{N}_0(c_n) \) and \(\mathcal{N}_1(c_n) \) we mean the cardinalities of families \(\mathcal{N}(C_n) \), \(\mathcal{N}_0(c_n) \) and \(\mathcal{N}_1(c_n) \) respectively. Using these numbers, we obtain the following equality.

\[
\mathcal{N}(C_n) = \mathcal{N}_0(c_n) + \mathcal{N}_1(c_n), \quad n \geq 4
\]

It is easy to check that \(\mathcal{N}(C_4) = 7 \) and \(\mathcal{N}(C_5) = 11 \).

Theorem 2: For \(n \geq 5 \),
\[
\mathcal{N}(C_{n+1}) = \mathcal{N}(C_{n-1}) + \mathcal{N}(C_n)
\]

Proof: Let \(\mathcal{N} \) be a neighborhood set of \(C_n \) for \(n \geq 5 \). Consider the following cases:

1. If \(X_1 \notin D \) and \(X_2, X_n \in D \), then \(D \in \mathcal{N}_1(H_1) \) where
 \(V(H_1) = V(C_n) - \{X_1\} \) and \(E(H_1) = \{E(C_n) - \{X_nX_1, X_1X_2\}\} \cup \{X_nX_2\} \)
Hence \(H_1 = C_{n-1} \)

(ii) \(\text{If} X_n \notin D \quad \text{and} \quad X_1, X_{n-1} \in D \quad \text{then} \quad D \in \mathbb{N}_{01}(H_2) \), where
\[
V(H_2) = V(C_n) - (X_n) \quad \text{and} \quad E(H_2) = \{ E(C_n) - (X_{n-1}X_n, X_nX_1) \} \cup (X_{n-1}X_1)
\]

Hence \(H_2 = C_{n-1} \)

(iii) \(\text{If} X_1, X_n \in D \quad \text{and} \quad X_2 \notin D \quad \text{then} \quad D \in \mathbb{N}_{01}(H_1) \)

(iv) \(\text{If} X_1, X_2, X_n \in D \quad \text{then} \quad D \in \mathbb{N}_{11}(H_1) \)

Hence from case (i),(ii),(iii) and (iv) we have that
\[
\mathbb{N}_{01}(C_n) = \mathbb{N}_{11}(H_1) + \mathbb{N}_{11}(H_2)
\]
\[
\mathbb{N}_{01}(C_n) = 2\mathbb{N}_{11}(C_{n-1})
\]
\[
\mathbb{N}_{11}(C_n) = \mathbb{N}_{01}(C_{n-1})/2 + \mathbb{N}_{11}(C_{n-1})
\]
\[
\mathbb{N}(C_n) = \mathbb{N}_{01}(C_{n}) + \mathbb{N}_{11}(C_{n})
\]
\[
\mathbb{N}(C_n) = 2\mathbb{N}_{11}(C_{n-1}) + \mathbb{N}_{01}(C_{n-1})/2 + \mathbb{N}_{11}(C_{n-1})
\]
\[
\mathbb{N}(C_n) = (2\mathbb{N}_{01}(C_{n-2})/2 + \mathbb{N}_{11}(C_{n-2})) + \mathbb{N}_{01}(C_{n-1})/2 + \mathbb{N}_{11}(C_{n-1})
\]
\[
\mathbb{N}(C_n) = \mathbb{N}_{01}(C_{n-2}) + 2\mathbb{N}_{11}(C_{n-2}) + 1/2(2\mathbb{N}_{11}(C_{n-2})) + \mathbb{N}_{11}(C_{n-1})
\]
\[
\mathbb{N}(C_n) = \mathbb{N}_{01}(C_{n-2}) + \mathbb{N}_{01}(C_{n-1}) + \mathbb{N}_{11}(C_{n-2}) + \mathbb{N}_{11}(C_{n-1})
\]

From equation (4) the above equation reduces to
\[
\mathbb{N}(C_n) = \mathbb{N}_{01}(C_{n-2}) + \mathbb{N}_{11}(C_{n-2}) + \mathbb{N}_{01}(C_{n-1}) + \mathbb{N}_{11}(C_{n-1})
\]

Split neighbourhood set of \(P_n \) and \(C_n \):

Using the numbers \(\mathbb{N}(P_n) \) and \(\mathbb{N}(C_n) \) we determine the number of split neighbourhood sets of path and the cycle of graphs on \(n \) vertices. First we give supportive theorem that characterize the split neighbourhood set of \(P_n \) and \(C_n \).

Lemma 3: Any neighbourhood set \(D \) of \(P_n \) \(n \geq 3 \), is a split neighbourhood set of \(P_n \) if and only if \(V(P_n) - D \neq \emptyset \), \(\langle V(P_n) - D \rangle_{(P_n)} \neq K_1 \).

Proof: Let \(S \) be a split neighbourhood set \(D \) of \(P_n \). According to the definition of \(S \), it follows that \(\langle V(P_n) - D \rangle \) is disconnected. Thus \(V(P_n) - D \neq \emptyset \), \(\langle V(P_n) - D \rangle_{(P_n)} \neq K_1 \), proving necessity.

For sufficiency, let \(D \) be a neighbourhood set of \(P_n \), \(n \geq 3 \), and suppose \(V(P_n) - D \neq \emptyset \), \(\langle V(P_n) - D \rangle_{(P_n)} \neq K_1 \). Since \(H = \langle V(P_n) - D \rangle_{(P_n)} \) is an induced subgraph of \(P_n \), then any connected component of \(H \) is isomorphic to the path \(P_k \), \(1 \leq k \leq n-1 \) (where \(P_1 = K_1 \)). Let \(H_1 \) be a connected

© 2010, IJMA. All Rights Reserved
component of the subgraph H. We show that H_1 is not a unique connected component of H. First, observe that H_1 contains atmost two vertices. Otherwise there would exist a vertex of $H_1 \subset H = \langle V(P_n - D) \rangle_{(P_n)}$ not neighbour of D in P_n. Consequently, $H_1 = P_1$ or $H_1 = P_2$. Hence H has at least two connected components, because $H_1 \neq P_1$ or $H_1 \neq P_2$ by premise. This shows that $H = \langle V(P_n - D) \rangle_{(P_n)}$ is disconnected. Moreover, since D is also a neighbourhood set of P_n, it is a split neighbourhood set of P_n, completes the proof of the theorem.

Similar to the case of P_n, we have a result concerning the split neighbourhood sets of C_n.

Lemma 4: Any neighbourhood set D of C_n, $n \geq 4$ is a split neighbourhood set of C_n if and only if $V(P_n) - D \neq \emptyset$, $\langle V(C_n) - D \rangle_{(C_n)} \neq K_1$.

Additionally, observe that there is only one neighbourhood set D of P_n such that $V(P_n) - D \neq \emptyset$, and there are exactly n neighbourhood sets D of P_n such that $\langle V(P_n) - D \rangle_{(P_n)} \approx K_1$.

In special cases of C_n, we have one Neighbourhood set D such that $V(C_n) - D = \emptyset$ and n for $\langle V(C_n) - D \rangle_{(C_n)} \approx K_1$.

For $n \geq 3$, we introduce the notation

$S(G) = \{D \subseteq V(G) : D \text{ is a split neighbourhood set of } G\}$

$S(G) \equiv |S(G)|$

From the above, we have the following corollary, which will be used in proving theorem.

Corollary 5: $s(P_n) = d(P_n) - (1 + n)$ for $n \geq 3$

and $s(C_n) = d(C_n) - (1 + n)$ It is easy to see that $s(P_3) = 1$, $s(P_4) = 3$ and $s(P_5) = 7$.

Theorem 6: For $n \geq 5$,

$s(P_{n+1}) = s(P_{n+1}) + s(P_n) + (n-1)$

Proof: Let $n \geq 5$, according to corollary (3), for P_{n+1} we have that

$s(P_{n+1}) = d(P_{n+1}) - (2 + n)$ since $d(P_{n+1}) = d(P_{n+1}) + d(P_n)$

by theorem (1), we obtain

$s(P_{n+1}) = d(P_{n+1}) - (2 + n)$

$= d(P_{n+1}) + d(P_n) - (2 + n)$

$= d(P_{n+1}) - n + d((P_n) - (n + 1)) - (2 + n)$

$= d(P_{n+1}) - n + d((P_n - (n + 1)) - (2 + n + n + (n + 1))$}

© 2010, IJMA. All Rights Reserved

436
since \((n+1+n-2-n=(n-1))\), it follows that
\[
d = (P_{n-1}) - n) + d((P_n) - (n+1)) + (n-1)
\]
Finally applying corollary (3) to the expressions in brackets,
\[
s(P_{n+1}) = s(P_{n-1}) + s(P_n) + (n-1)
\]

Theorem 7: For \(n \geq 5\),
\[
s(C_{n+1}) = s(C_{n-1}) + s(C_n) + (n-1)
\]

Proof: Let \(n \geq 5\), putting \(n+1\) in place of \(n\) in corollary 3, it follows
\[
s(C_{n+1}) = d(C_{n+1}) - (2+n)\) according to theorem (2).
\[
d(C_{n+1}) = d(C_{n-1}) - d(C_n)\) hence,
\[
s(C_{n+1}) = d(C_{n+1}) - (2+n)
\]
\[
= d(C_{n-1}) + d(C_n) - (2+n)
\]
\[
= d((C_{n-1}) - n + n) + d((C_n) - (n+1) + (n+1)) - (2+n)
\]
\[
= d((C_{n-1}) - n) + d((C_n) - (n+1)) + (n+1+n-2-n)
\]
since \((n+1+n-2-n=(n-1))\), it follows that
\[
d = d((C_{n-1}) - n) + d((C_n) - (n+1)) + (n-1)
\]
Finally applying corollary (3) to the expressions in brackets,
\[
s(C_{n+1}) = s(C_{n-1}) + s(C_n) + (n-1)
\]

REFERENCES:
