Bounds on the Largest of Minimum Degree Laplacian Eigenvalues of a Graph

Chandrashekar Adiga and C. S. Shivakumar Swamy

(Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore 570 006, India)

E-mail: c.adiga@hotmail.com, cskswamy@gmail.com

Abstract: In this paper we give three upper bounds for the largest of minimum degree Laplacian eigenvalues of a graph and also obtain a lower bound for the same.

Key Words: Minimum degree matrix, minimum degree Laplacian eigenvalues.

AMS(2010): 05C50

§1. Introduction

Let $G = (V,E)$ be a simple, connected graph with vertex set $V = \{v_1, v_2, \ldots, v_n\}$ and edge set $E = \{e_1, e_2, \ldots, e_m\}$. Assume that the vertices are ordered such that $d_1 \geq d_2 \geq \ldots \geq d_n$, where d_i is the degree of v_i for $i = 1, 2, \ldots, n$. The energy of G was first defined by I. Gutman [5] in 1978 as the sum of the absolute values of its eigenvalues. The energy of a graph has close links to Chemistry (see for instance [6]). The $n \times n$ matrix $m(G) = (d_{ij})$ is called the minimum degree matrix of G, where

$$d_{ij} = \begin{cases}
\min\{d_i, d_j\} & \text{if } v_i \text{ and } v_j \text{ are adjacent,} \\
0 & \text{otherwise.}
\end{cases}$$

This was introduced and studied in [1]. The characteristic polynomial of the minimum degree matrix $m(G)$ is defined by

$$\phi(G; \lambda) = \det(\lambda I - m(G)) = \lambda^n + c_1\lambda^{n-1} + c_2\lambda^{n-2} + \ldots + c_{n-1}\lambda + c_n,$$ \hspace{1cm} (1.1)

where I is the unit matrix of order n. The minimum degree Laplacian matrix of G is $L(G) = D(G) - m(G)$, where $D(G) = \text{diag}(d_1, d_2, \ldots, d_n)$. $L(G)$ is a real, symmetric matrix. The minimum degree Laplacian eigenvalues $\mu_1, \mu_2, \ldots, \mu_n$ of the graph G, assumed in the non increasing order, are the eigenvalues of $L(G)$. The Laplacian matrix of G is $L_1(G) = D(G) - A(G)$, where $A(G)$ is the adjacency matrix of G. The eigenvalues of the laplacian matrix $L_1(G)$ are important in graph theory, because they have relations to numerous graph invariants including connectivity, expanding property, isoperimetric number, independence number, genus, diameter, mean distance, and bandwidth-type parameters of a graph (see, for example, [2,3,9,10]). In

1 Received November 3, 2010. Accepted June 10, 2011.
many applications one needs good bounds for the largest Laplacian eigenvalue (see for instance [2,3,9,10]). In this paper, we give three upper bounds and a lower bound for μ_1 the largest of minimum degree Laplacian eigenvalues of a graph.

§2. Main Results

In this section, we will give three upper bounds for μ_1 the largest of minimum degree Laplacian eigenvalues of a graph. We employ the following theorem to prove one of our main results.

Theorem 2.1 ([4]) Let G be a simple graph with n vertices and m edges, and let $\Pi = (d_1, d_2, \ldots, d_n)$ be the degree sequence of G. Then,

$$d_1^2 + d_2^2 + \ldots + d_n^2 \leq m\left(\frac{2m}{n-1} + n - 2\right).$$

Theorem 2.2 Let G be a connected graph with n vertices and m edges. Then

$$\mu_1 \leq \frac{2m + \sqrt{(n-1)\left[n(2|c_2| + m\left(\frac{2m}{n-1} + n - 2\right) - 4m^2\right)}}}{n},$$

where c_2 is the coefficient of λ^{n-2} in $\det(\lambda I - m(G))$.

Proof Clearly

$$\mu_1 + \mu_2 + \ldots + \mu_n = \text{Trace}[L(G)] = \sum_{v \in V(G)} d_v, \quad (2.1)$$

$$\mu_1^2 + \mu_2^2 + \ldots + \mu_n^2 = 2|c_2| + \sum_{i=1}^{n} d_i^2. \quad (2.2)$$

By Cauchy-Schwarz inequality, we have

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right). \quad (2.3)$$

Putting $a_i = 1$ and $b_i = \mu_i$ for $i = 2, \ldots, n$ in (2.3), we get

$$\left(\sum_{i=1}^{n} \mu_i - \mu_1\right)^2 \leq (n-1) \left(\sum_{i=1}^{n} \mu_i^2 - \mu_1^2\right).$$

Using (2.1) and (2.2) in above inequality, we obtain

$$\left(\sum_{v \in V(G)} d_v - \mu_1\right)^2 \leq (n-1) \left[2|c_2| + \sum_{i=1}^{n} d_i^2\right] - (n-1)\mu_1^2.$$
i.e., \[n\mu_1 - \sum_{v \in V(G)} d_v \leq \sqrt{(n-1) \left[n(2|c_2| + \sum_{i=1}^n d_i^2) - \left(\sum_{i=1}^n d_i \right)^2 \right]}. \]

Therefore

\[\mu_1 \leq \frac{\sum_{i=1}^n d_i + \sqrt{(n-1) \left[n \left(2|c_2| + \sum_{i=1}^n d_i^2 \right) - \left(\sum_{i=1}^n d_i \right)^2 \right]}}{n}. \tag{2.4} \]

Employing Theorem 2.1 and \(\sum_{i=1}^n d_i = 2m \) in (2.4), we see that

\[\mu_1 \leq \frac{2m + \sqrt{(n-1) \left[n(2|c_2| + m \left(\frac{2m}{n-1} + n - 2 \right) - 4m^2 \right]}}{n}. \]

This completes the proof. \(\square \)

The following theorem gives another type of upper bound for \(\mu_1 \).

Theorem 2.3 Let \(G \) be connected graph with \(n \) vertices and \(m \) edges. Then

\[\mu_1 \leq \sqrt{2d_1^2 + 4m - 2d_1^2(n - d_1)}. \]

Proof Suppose that \(X = (x_1, x_2, x_3, \ldots, x_n)^T \) be an eigenvector with unit length corresponding to \(\mu_1 \). Then

\[L(G)X = \mu_1 X. \]

Hence, for \(u \in V(G) \),

\[\mu_1 x_u = d_u x_u - \sum_{v \in V(G)} d_{uv} x_v. \]

Here \(x_u \) we mean \(x_i \) if \(u = v_i \). Therefore

\[\mu_1 x_u = \sum_{vu \in E(G)} (x_u - \min(d_u, d_v)x_v). \tag{2.5} \]

By Cauchy-Schwarz inequality, we have

\[\mu_1^2 x_u^2 \leq \left(\sum_{vu \in E(G)} 1^2 \right) \left(\sum_{vu \in E(G)} (x_u - \min(d_u, d_v)x_v)^2 \right) \]

\[\quad = d_u \left[\sum_{vu \in E(G)} x_u^2 + \sum_{vu \in E(G)} \min(d_u, d_v)^2 x_v^2 - 2x_u \min(d_u, d_v) x_v \right]. \]

Observe that

\[-2x_u \sum_{vu \in E(G)} \min(d_u, d_v)x_v \leq d_u x_u^2 + \sum_{vu \in E(G)} \min(d_u, d_v)^2 x_v^2. \tag{2.6} \]
Hence,

\[
\mu_1^2 x_u^2 \leq d_u \left[\sum_{vu \in E(G)} x_u^2 + \sum_{vu \in E(G)} \min(d_u, d_v)^2 x_v^2 + d_u x_u^2 + \sum_{vu \in E(G)} \min(d_u, d_v)^2 x_v^2 \right].
\]

i.e.,

\[
\mu_1^2 x_u^2 \leq 2d_u^2 x_u^2 + 2d_u \sum_{vu \in E(G)} \min(d_u, d_v)^2 x_v^2.
\]

Consequently,

\[
\mu_1^2 = \mu_1^2 \sum_{u \in V(G)} x_u^2 \\ \leq \sum_{u \in V(G)} [2d_u^2 x_u^2 + 2d_u \sum_{vu \in E(G)} \min(d_u, d_v)^2 x_v^2] \\ = 2 \sum_{u \in V(G)} d_u^2 x_u^2 + 2 \sum_{u \in V(G)} d_u \sum_{vu \in E(G)} \min(d_u, d_v)^2 x_v^2.
\]

Thus

\[
\mu_1^2 \leq 2d_1^2 + 2 \sum_{u \in V(G)} d_u \sum_{vu \in E(G)} \min(d_u, d_v)^2 x_v^2.
\]

Now let \(v \sim u \) mean that \(u \) and \(v \) are not adjacent. Then

\[
\sum_{u \in V(G)} d_u \sum_{vu \in E(G)} \min(d_u, d_v)^2 x_v^2 \\ = \sum_{u \in V(G)} d_u \left[1 - \sum_{v \sim u} \min(d_u, d_v)^2 x_v^2 \right] = 2m - \sum_{u \in V(G)} d_u \sum_{v \sim u} \min(d_u, d_v)^2 x_v^2 \\ = 2m - \left(\sum_{u \in V(G)} d_u \min(d_u, d_v)^2 x_v^2 + \sum_{u \in V(G)} d_u \sum_{v \sim u, v \neq u} \min(d_u, d_v)^2 x_v^2 \right) \\ \leq 2m - \left(d_n^2 \sum_{u \in V(G)} d_u x_u^2 + \sum_{u \in V(G)} d_n \sum_{v \sim u, v \neq u} d_n^2 x_v^2 \right) \\ = 2m - \left(d_n^2 \sum_{u \in V(G)} d_u x_u^2 + \sum_{u \in V(G)} d_n^3 (n - d_u - 1)x_u^2 \right) \\ = 2m - \left(d_n^2 \sum_{u \in V(G)} d_u x_u^2 + \sum_{u \in V(G)} d_n^3 nx_u^2 - d_n^3 \sum_{u \in V(G)} d_u x_u^2 - d_n^3 \sum_{u \in V(G)} x_u^2 \right) \\ \leq 2m - d_n^3 \sum_{u \in V(G)} (n - d_1)x_u^2 \\ = 2m - d_n^3 (n - d_1).
\]

Hence, employing this in (2.8) we have

\[
\mu_1^2 \leq 2d_1^2 + 4m - 2d_n^3 (n - d_1).
\]
Therefore
\[\mu_1 \leq \sqrt{2d_1^2 + 4m - 2d_1^2(n - d)}. \]

Theorem 2.4 Let \(G \) be a connected graph then
\[\mu_1 \leq \max \left(\sqrt{2(d_u^2 + d_u^2m_u d_u)} : u \in V(G) \right). \]

Proof From (2.7) we have
\[\mu_1^2 x_u^2 \leq 2d_u^2x_u^2 + 2d_u \sum_{v : vu \in E(G)} \min(d_u, d_v)^2 x_v^2. \]

Thus
\[\mu_1^2 \sum_{u \in V(G)} x_u^2 \leq 2 \sum_{u \in V(G)} d_u^2x_u^2 + 2 \sum_{u \in V(G)} d_u \sum_{v : vu \in E(G)} \min(d_u, d_v)^2 x_v^2. \]
\[\leq 2 \sum_{u \in V(G)} d_u^2x_u^2 + 2d_1^2 \sum_{u \in V(G)} d_u \sum_{v : vu \in E(G)} x_v^2 \]
\[= 2 \left[\sum_{u \in V(G)} d_u^2x_u^2 + d_1^2 \sum_{u \in V(G)} x_u^2 \sum_{v : vu \in E(G)} d_v \right] \]
\[= 2 \left[\sum_{u \in V(G)} d_u^2x_u^2 + d_1^2 \sum_{u \in V(G)} x_u^2 m_u d_u \right] \]

where \(m_u \) = average degree of the vertices adjacent to \(u \).

So,
\[\mu_1 \leq \sqrt{2 \sum_{u \in V(G)} (d_u^2 + d_u^2m_u d_u) x_u^2}. \]

Hence
\[\mu_1 \leq \max \left\{ \sqrt{2(d_u^2 + d_u^2m_u d_u)} : u \in V(G) \right\}. \]

§3. Lower Bound for Spectral Radius of Graphs

In this section we establish a lower bound for the spectral radius \(\mu_1 \) of \(G \).

Lemma 3.1 ([7][8]) Let \(M \) be real symmetric matrix with eigenvalues \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \). Given a partition \(\{1, 2, \ldots, n\} = \Delta_1 \cup \Delta_2 \cup \ldots \cup \Delta_m \) with \(|\Delta_i| = n_i > 0 \), consider the corresponding blocking \(M = (M_{ij}) \), so that \(M_{ij} \) is an \(n_i \times n_j \) block. Let \(e_{ij} \) be the sum of the entries in \(M_{ij} \) and put \(B = (x_{ij}^2 m_{ij}) \) i.e., \(x_{ij}^2 \) is an average row sum in \(M_{ij} \). Let \(\gamma_1 \geq \gamma_2 \geq \ldots \geq \gamma_m \) be the eigenvalues of \(B \). Then the inequalities
\[\lambda_i \geq \gamma_1 \geq \lambda_{n-m+i} \quad (i = 1, 2, \ldots, m) \]
hold. Moreover, if for some integer \(k, 1 \leq k \leq m, \lambda_i = \gamma_i \) for \(i = 1, 2, \ldots, k \) and \(\lambda_{n-m+i} = \gamma_i \) for \(i = k + 1, k + 2, \ldots, m \), then all the blocks \(M_{ij} \) have constant row and column sums.
Let G be a connected graph with n vertices and m edges. Let $V_1 = \{v_1, v_2, \ldots, v_{n_1}\}$ and $V_2 = \{v_{n_1+1}, v_{n_1+2}, \ldots, v_n\}$ be two partitions of vertices of graph G. Let

\[
\begin{align*}
 r_1 &= \frac{1}{n_1} \sum_{i, j = 1 \atop i \neq j}^{n_1} \min(d(v_i), d(v_j)), \\
 r_2 &= \frac{1}{n-n_1} \sum_{i, j = 1 \atop i \neq j}^{n-n_1} \min(d(v_{n_1+i}), d(v_{n_1+j})), \\
 k_1 &= -\frac{1}{n_1} \sum_{i, j = 1 \atop i \neq j}^{n-n_1} \min(d(v_i), d(v_{n_1+j})), \\
 k_2 &= -\frac{1}{n-n_1} \sum_{j = 1 \atop j \neq \{i \atop i \in 1, 2, \ldots, n\} \atop i \neq j}^{n-n_1} \min(d(v_{n_1+i}), d(v_j)),
\end{align*}
\]

where $d(v)$ is the degree of the vertex v of G. Now we prove the following theorem.

Theorem 3.2 Let G be a connected graph with n vertices and m edges, then

\[
\mu_1 \geq \frac{1}{2} \left\{ d_2 + d_1 - r_2 - r_1 + \sqrt{(d_2 - d_1 - r_2 + r_1)^2 - 4k_1k_2} \right\}.
\]

Proof Rewrite $L(G)$ as

\[
L(G) = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}.
\]

For $1 \leq i, j \leq 2$, let e_{ij} be the sum of the entries in L_{ij} and put $B = (e_{ij}/n_i)$. Then

\[
B = \begin{pmatrix} d_1 - r_1 & k_1 \\ k_2 & d_2 - r_2 \end{pmatrix},
\]

and so

\[
|\lambda I - B| = \begin{vmatrix} \lambda - (d_1 - r_1) & -k_1 \\ -k_2 & \lambda - (d_2 - r_2) \end{vmatrix}.
\]

Therefore we have

\[
\lambda = \frac{1}{2} \left\{ d_2 + d_1 - r_2 - r_1 \pm \sqrt{(d_2 - d_1 - r_2 + r_1)^2 - 4k_1k_2} \right\}.
\]

Thus by Lemma 3.1 we get

\[
\mu_1 \geq \frac{1}{2} \left\{ d_2 + d_1 - r_2 - r_1 + \sqrt{(d_2 - d_1 - r_2 + r_1)^2 - 4k_1k_2} \right\}.
\]

\[\square\]

Acknowledgment The first author is thankful to the Department of Science and Technology, Government of India, New Delhi for the financial support under the grant DST/SR/S4/MS: 490107.
References

I want to bring out the secrets of nature and apply them for the happiness of man. I don’t know of any better service to offer for the short time we are in the world.

By Thomas Edison, an American inventor.
Author Information

Submission: Papers only in electronic form are considered for possible publication. Papers prepared in formats, viz., .tex, .dvi, .pdf, or.ps may be submitted electronically to one member of the Editorial Board for consideration in the International Journal of Mathematical Combinatorics (ISSN 1937-1055). An effort is made to publish a paper duly recommended by a referee within a period of 3 months. Articles received are immediately put the referees/members of the Editorial Board for their opinion who generally pass on the same in six week’s time or less. In case of clear recommendation for publication, the paper is accommodated in an issue to appear next. Each submitted paper is not returned, hence we advise the authors to keep a copy of their submitted papers for further processing.

Abstract: Authors are requested to provide an abstract of not more than 250 words, latest Mathematics Subject Classification of the American Mathematical Society, Keywords and phrases. Statements of Lemmas, Propositions and Theorems should be set in italics and references should be arranged in alphabetical order by the surname of the first author in the following style:

Books

Research papers

Figures: Figures should be drawn by TExCAD in text directly, or as EPS file. In addition, all figures and tables should be numbered and the appropriate space reserved in the text, with the insertion point clearly indicated.

Copyright: It is assumed that the submitted manuscript has not been published and will not be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copyright for their articles is transferred to the publisher, if and when, the paper is accepted for publication. The publisher cannot take the responsibility of any loss of manuscript. Therefore, authors are requested to maintain a copy at their end.

Proofs: One set of galley proofs of a paper will be sent to the author submitting the paper, unless requested otherwise, without the original manuscript, for corrections after the paper is accepted for publication on the basis of the recommendation of referees. Corrections should be restricted to typesetting errors. Authors are advised to check their proofs very carefully before return.