See discussions, stats, and author profiles for this publication at: [https://www.researchgate.net/publication/268721733](https://www.researchgate.net/publication/268721733_Tail_behaviour_of_distributions_in_the_domain_of_partial_attraction_and_some_related_iterated_logarithm_laws?enrichId=rgreq-c51f04a88eb3414b3882c5d23843fb92-XXX&enrichSource=Y292ZXJQYWdlOzI2ODcyMTczMztBUzozMTg0NTg0MzA5ODQxOTRAMTQ1MjkzNzgxNDc4MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf)

[Tail behaviour of distributions in the domain of partial attraction and some](https://www.researchgate.net/publication/268721733_Tail_behaviour_of_distributions_in_the_domain_of_partial_attraction_and_some_related_iterated_logarithm_laws?enrichId=rgreq-c51f04a88eb3414b3882c5d23843fb92-XXX&enrichSource=Y292ZXJQYWdlOzI2ODcyMTczMztBUzozMTg0NTg0MzA5ODQxOTRAMTQ1MjkzNzgxNDc4MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf) related iterated logarithm laws

All content following this page was uploaded by [Gooty Divanji](https://www.researchgate.net/profile/Gooty_Divanji3?enrichId=rgreq-c51f04a88eb3414b3882c5d23843fb92-XXX&enrichSource=Y292ZXJQYWdlOzI2ODcyMTczMztBUzozMTg0NTg0MzA5ODQxOTRAMTQ1MjkzNzgxNDc4MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf) on 16 January 2016.

Indian Statistical Institute

Tail Behaviour of Distributions in the Domain of Partial Attraction and Some Related Iterated Logarithm Laws Author(s): G. Divanji and R. Vasudeva Source: Sankhyā: The Indian Journal of Statistics, Series A (1961-2002), Vol. 51, No. 2 (Jun., 1989), pp. 196-204 Published by: [Springer](http://www.jstor.org/action/showPublisher?publisherCode=springer) on behalf of the [Indian Statistical Institute](http://www.jstor.org/action/showPublisher?publisherCode=indstatinst) Stable URL: http://www.jstor.org/stable/25050737 Accessed: 08/08/2013 06:58

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at <http://www.jstor.org/page/info/about/policies/terms.jsp>

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Springer and *Indian Statistical Institute* are collaborating with JSTOR to digitize, preserve and extend access to *Sankhy: The Indian Journal of Statistics, Series A (1961-2002).*

http://www.jstor.org

TAIL BEHAVIOUR OF DISTRIBUTIONS IN THE DOMAIN OF PARTIAL ATTRACTION AND SOME RELATED ITERATED LOGARITHM LAWS

By G. DIVANJI* and R. VASUDEVA

University of Mysore, India

SUMMARY. Let F be a distribution function and let (S_n) be a partial sum sequence of **i.i.d. random variables with the common distribution F. F is said to be in the domain of partial attraction iff there exists an integer sequence** (n_j) **such that** (S_{n_j}) **, properly normalized, converges to a non degenerate random variable. Under certain assumptions on the sequence (nj) we characterize the tail of F and obtain iterated logarithm laws for** (S_n) **and** $\left(\begin{array}{c} \max \\ 1 \le k \le n \end{array} |S_k|\right)$ **.**

1. Introduction

Let (X_n) be a sequence of independent identically distributed (i.i.d.) random variables (r.v.) defined over a common probability space (Ω, \mathcal{F}, P) **n** and let $S_n = \sum_{i=1}^n X_i$, $n \geqslant 1$. Let F denote the distribution function (d.f.) **i=i** of X_1 . Let (n_j) be an integer subsequence and let (a_{n_j}) and (B_{n_j}) be sequence of constants $(B_{n_i} \to \infty$ as $j \to \infty)$. Set $Z_{n_i} = B_{n_i}^{-1} S_{n_i} - a_{n_i}$. When (n_i) coi **nj nj nj nj** cides with the sequence of natural numbers (n) , for proper selection of (a_n) and (B_n) , if (Z_n) converges weakly, then it is wellknown that the limit law is stable (or possibly degenerate). For some subsequence (n_j) and for proper selection of (a_{n_j}) and (B_{n_j}) , if (Z_{n_j}) converges weakly, then the limit law is **known to be an infinitely divisible law (see, ex. Gnedenko and Kolmo** gorov (1954)). Kruglov (1972) considered sequences (n_j) satisfying (i) $n_j <$ $n_{j+1}, j \geq 1$, and (ii) $\lim_{j \to \infty} n_{j+1}/n_j = r \geq 1$, and characterized the class 2 $j \rightarrow \infty$ of all infinitely divisible distributions which are limit laws of (Z_{n_i}) . He found that the members of $\mathcal U$ have many properties of stable laws. It may be noted that the class of all stable laws is included in U . In particular, if $\lim_{j \to j} n_j = 1$, Kruglov (1972) established that (i) the

AMS (1980) subject classification: Primary 60F15, Secondary 60E99.

Research supported by University of Mysore Junior Research Fellowship and C.S.I.R.S.R. Fellowship.

Key words and phrases : Domain of partial attraction, Iterated logarithm laws, Slowly varying functions.

limit law of (Z_{n_i}) is a stable law and (ii) the sequence (Z_n) , properly normalized, will itself converge to the same stable law. Consequently, the subsequences of our interest under Kruglov's setup are those subsequences (u_i) with $\lim_{i \to \infty} n_{i+1}/n_i = r, r > 1$. Here Kruglov has characterized the limit **distribution G as either normal or as an infinitely divisible distribution with** the characteristic function ϕ of the form

$$
\log \phi(t) = i\gamma t + \int \left(e^{itx} - 1 - \frac{itx}{1+x^2}\right) dH(x),
$$

where γ is some real constant and H is a spectral function with $H(-x)$ $x = x^{-\alpha} \theta_1$ (log x), $x > 0$, $H(x) = -x^{-\alpha} \theta_2(\log x)$, $x > 0$, $0 < \alpha < 2$ and θ_1 and θ_2 are periodic functions with a common period such that for all $x > 0$ and $h \geq 0$, $e^{ah} \theta_i(x-h) - e^{-ah} \theta_i(x+h) \geq 0$, $c_i \leq \theta_i(x) \leq d_i$, $x > 0$, $i = 1, 2$, $c_1+c_2 > 0.$

When the d.f. $G \in \mathcal{U}$ is non-normal we denote it by G_a , $0 < \alpha < 2$. Throughout this paper, F is in the domain of partial attraction of G_a means that the sequence (Z_{n_i}) converges in distribution to G_{α} , where (n_j) satisfies the conditions $n_j < n_{j+1}, j = 1, 2, ...$ and $\lim_{j \to \infty} n_{j+1}/n_j = r(> 1)$. This is denoted by $F \in DP(\alpha)$, $0 < \alpha < 2$.

In the next section we obtain an asymptotic expression for the tail of F when $F \in DP(\alpha)$. Assuming that $a_{n_j} = 0$, in Z_{n_j} , $j \geqslant 1$, we establish a lav of the iterated logarithm (1.i.1.) for (S_n) , which is similar to Chover (1966). Under a further assumption that X_1 is symmetric about zero, we prove a 1.i.1. for $A_n = \max_{1 \leq k \leq n} |S_k|$, $n \geq 1$, which is of the form of Theorem 1, Jain and **Pruitt (1973). Even though the weak convergence is available only over the** subsequence (n_j) , the iterated logarithm results have been obtained for the **sequences** (S_n) and (A_n) .

For any $u > 0$, by [u] we mean the greatest integer $\leq u$. i.o. and a.s. **stand for infinitely often and almost surely. Throughout the paper, c, s, J (integer) and N (integer), with or without a suffix, stand for positive constants.**

2. Tail behaviour of f

Theorem 1: Let $F \in DP(\alpha)$, $0 < \alpha < 2$. Then there exists a slowly *varying function* L and a function θ bounded in between two positive numbers $b_1, b_2, 0 < b_1 \leqslant b_2 < \infty$, such that

$$
\lim_{x \to \infty} \frac{x^{\alpha}(1 - F(x) + F(-x))}{L(x) \theta(x)} = 1.
$$

Proof : From the fact that $F \in DP(\alpha)$, by Gnedenko, and Kolmogorov, (1954) we have for any $y > 0$,

$$
\lim_{j \to \infty} n_j F(-B_{n_j} y) = y^{-\alpha} \theta_1 (\log y)
$$

and
$$
\lim_{j \to \infty} n_j (F(B_{n_j} y) - 1) = -y^{-\alpha} \theta_2 (\log y)
$$

For $x > 0$, which is large, choose an integer j and a fixed positive number y such that $B_{n_j} y \leqslant x \leqslant B_{n_{j+1}} y$. Define $T(x) = 1-F(x)+F(-x)$ and $\phi_k(y)$

$$
= \frac{\theta_1(\log y) + \theta_2(\log y)}{\theta_1(\log ky) + \theta_2(\log ky)}
$$
 for any $k > 0$. We have for any $k > 0$,

$$
\frac{T(B_{n_{j+1}}y)}{T(kB_{n_j}y)} \leq \frac{T(x)}{T(kx)} \leq \frac{T(B_{n_j}y)}{T(kB_{n_{j+1}}y)}.
$$

so that

$$
\frac{n_j}{n_{j+1}}\cdot\frac{n_{j+1}T(B_{n_{j+1}}y)}{n_jT(kB_{n_j}y)}\leqslant\frac{T(x)}{T(kx)}\leqslant\frac{n_{j+1}}{n_j}\cdot\frac{n_jT(B_{n_j}y)}{n_{j+1}T(kB_{n_{j+1}}y)}.
$$

'

Using the fact that $n_{j+1}/n_j \to r$ **as** $j \to \infty$ **, as** $x \to \infty$ $(j \to \infty)$ **, one gets**

$$
\frac{k^{\alpha}\phi_k(y)}{r} \leqslant \liminf_{x \to \infty} \frac{T(x)}{T(kx)} \leqslant \limsup_{x \to \infty} \frac{T(x)}{T(kx)} \leqslant rk^{\alpha}\phi_k(y).
$$

Since $c_i \nleq \theta_i(x) \nleq d_i, x > 0, i = 1, 2$, we have

$$
k^{\alpha}c^{-1} \leq \liminf_{x \to \infty} \frac{T(x)}{T(kx)} \leq \limsup_{x \to \infty} \frac{T(x)}{T(kx)} \leq k^{\alpha}c,
$$

where $c = r(d_1+d_2)/(c_1)$

Now set $T(x) = x^{-\alpha} H(x)$. Then we have the relation

$$
c^{-1} \leqslant \liminf_{x \to \infty} \frac{H(x)}{H(kx)} \leqslant \limsup_{x \to \infty} \frac{H(x)}{H(kx)} \leqslant c \qquad \qquad \dots \quad (1)
$$

By Drasin, and Seneta, (1986) one now finds that

 $\lim_{x \to \infty} \frac{H(x)}{L(x)\theta(x)} = 1$, where L is slowly varying (s.v) at ∞ and θ is such that **both** $\theta(x)$ and $1/\theta(x)$ are bounded for large x. Hence we have $T(x) \simeq x^ L(x)$ $\theta(x)$ and the proof of the theorem is complete.

198

3. Iterated logarithm laws

In this section we obtain two l.i.l. results. For Theorem 2 below we assume that $a_{n_j} = 0$ in Z_{n_j} . When $\alpha < 1$, a_{n_j} can always be chosen to be zero. When $\alpha > 1$, a_{n_j} becomes $n_j E X_1$. Hence one can make $a_{n_j} = 0$ b shifting $E X_1$ to zero. Consequently the condition $a_{n_j} = 0$ is no condition at all when $\alpha \neq 1$, $0 < \alpha < 2$. However when $\alpha = 1$, this assumption restricts only to symmetric d.f.s $F \in DP(1)$. For Theorem 3 below we further **assume that the d.f. F is symmetric about zero. We first prove a lemma needed in presenting our main results.**

Lemma : Let B_n be the smallest root of the equation : $nT(x) = 1$. Then $B_n \simeq n^{1/\alpha}$ l(n) $\eta(n)$, where *l* is a function s.v. at ∞ and η is a function such that both η and $1/\eta$ are bounded.

Proof : For x large, we have by Theorem 1,

$$
T(x) \simeq x^{-\alpha} L(x) \theta (x), \, b_1 \leq \theta(x) \leq b_2.
$$

Hence there exists a X_0 such that for all $x > X_0$,

$$
b_1x^{-a}L(x) \leq T(x) \leq b_2x^{-a}L(x) \qquad \qquad \dots \quad (2)
$$

Let B_{1n} and B_{2n} be respectively the smallest roots of $nb_1x^{-\alpha}L(x) = 1$ and $nb_x x^{-\alpha}L(x) = 1$. Then by the properties of regularly varying functions, one gets $B_{in} = b_i^{1/\alpha} n^{1/2} l(n)$ $i = 1, 2$, where I is s.v. at ∞ . Relation (2) in plies that $B_{1n} \nleq B_n \nleq B_{2n}$. Hence $B_n = n^{1/2} l(n) \eta(n)$ where $\eta(n)$ is bound between $b_1^{1/\alpha}$ and $b_2^{1/\alpha}$.

Theorem 2: Let $\mathsf{FeDP}(\alpha)$, $0 < \alpha < 2$. Then

$$
P\left(\limsup_{n\to\infty}|B_n^{-1}S_n|^{1/log\ log n}=e^{1/\alpha}\right)=1\qquad\qquad\ldots\qquad(3)
$$

Proof: In order to establish the theorem, equivalently we show that for any ε with $0 < \varepsilon < 1$,

$$
P(|S_n| > B_n(\log n)^{(1+\varepsilon)/\alpha} i.o.) = 0 \qquad \qquad \dots \quad (4)
$$

and

$$
P(|S_n| > B_n(\log n)^{\frac{(z-1)}{\alpha}} i.o.) = 1 \qquad \qquad \dots \quad (5)
$$

By Feller (1946) and by Kruglov (1972), (4) and (5) hold once we show that

$$
P(|X_n| > B_n(\log n)^{(1+\epsilon)/\alpha} i.o.) = 0 \qquad \qquad \dots \quad (6)
$$

and

$$
P(|X_n| > B_n(\log n)^{(1-\epsilon)/\alpha} i.o.) = 1 \qquad \qquad \dots \quad (7)
$$

From Theorem 1 above, one can find an integer N_1 such that for all $n \geq N_1$,

$$
P(|X_n| > B_n(\log n)^{(1+\varepsilon)/\alpha}) \leq c_3 L(B_n \left(\log n\right)^{(1+\varepsilon)/\alpha})/B_n^{\alpha} \left(\log n\right)^{(1+\varepsilon)}
$$

Using the fact that $L((\log n).^{(1+\epsilon)/\alpha}B_n) = 0$ ((log n)^{$\epsilon/2$} $L(B_n)$) and $L(B_n)$ $l^{-\alpha}(n)=0$ (1) which follows by the properties of s.v functions (see Feller, (1966) **or Seneta (1976)) one can show that**

$$
\limsup_{n\to\infty} n(\log n)^{(1+\varepsilon/2)} P(|X_n| > B_n(\log n)^{(1+\varepsilon)/\alpha}) < \infty.
$$

oo Consequently, $\sum_{n=1}^{\infty} P(|X_n| > B_n(\log n)^{(1+\epsilon)/n}) < \infty$, which in turn establishes **(6) by Borel-Cantelli lemma.**

Again by Theorem 1, there exists a N_2 such that for all $n \geq N_2$,

$$
P(|X_n| > B_n(\log n)^{(1-\varepsilon)/\alpha}) \geqslant c_4 L(B_n(\log n)^{(1-\varepsilon)/\alpha})/B_n^{\alpha}(\log n)^{(1-\varepsilon)}.
$$

By arguments similar to the above, one can show that

$$
\lim_{n \to \infty} n(\log n)^{(1-\epsilon/2)} P(|X_n| > B_n(\log n)^{(1-\epsilon)/\alpha}) = \infty, \qquad \dots \quad (8)
$$

Now (7) follows from (8) again by appealing to Borel-Cantelli lemma.

Theorem 3: Let F be a d.f. symmetric about zero and let $F \in DP(\alpha)$, $0 < \alpha < 2$. Let $\psi_n = B_{n/\log \log n}$, $n \geqslant 3$. Then there exists a finite positive **constant c such that**

$$
liminf \psi_n^{-1} A_n = c \ \ a.s.
$$

Proof: We now establish that for some constants c_5 and c_6 , $0 < c_5$ $\leqslant c_6 < \infty$,

$$
c_5 \leqslant \liminf_{n \to \infty} \psi_n^{-1} A_n \leqslant c_6 \quad \text{a.s.} \tag{9}
$$

In view of Hewitt-Savage zero-one law (9) implies that $\liminf \psi_n^{-1}A_n$ is **a.s. a finite positive constant. The proof is on the lines of Jain and Pruitt (1973.) First we prove that**

$$
P(\psi_n^{-1}A_n \leqslant c_5 \text{ i.o.}) = 0 \tag{10}
$$

Since $F \in DP(\alpha)$, we know that for all $x \in (-\infty, \infty)$,

$$
\lim_{j \to \infty} P(S_{n_j} \leqslant x B_{n_j}) = G_{\alpha}(x) \qquad \qquad \dots \quad (11)
$$

where $n_j < n_{j+1}, j = 1, 2, ...$ and $n_{j+1}/n_j \rightarrow r$ as $j \rightarrow \infty$

200

Let m_j be an integer sequence such that $n_j = [m_j/\log \log m_j]$. Set 1 $\mathbf{I} = [m_j/n_j], j = 1, 2, ...$ Then for any $c_5 > 0$

$$
\left(A_{m_j} \leqslant c_5 \,\psi_{m_{j-1}}\right) \subset \bigcap_{i=1}^{N_j} \left(|S_{in_j} - S_{(i-1)n_j}| \leqslant 2 \,c_5 \,\psi_{m_{j-1}}\right).
$$

Therefore ?,

$$
P\left(A_{m_j} \leqslant c_5 \psi_{m_{j-1}}\right) \leqslant \left\langle P\left(|S_{n_j}| \leqslant 2 c_5 \psi_{m_{j-1}}\right)\right\rangle^{N_j}
$$

Now proceeding as in Jain and Pruitt (1973) one gets for all $j \geqslant J_1$,

$$
P\left(A_{m_j} \leqslant c_5 \,\psi_{m_{j-1}}\right) \leqslant e^{-\theta N j}
$$

where $\theta > 1$ is some constant. By Kruglov (1972) we have

$$
n_j = r^{j\beta(j)} \qquad \qquad \dots \quad (12)
$$

where β is a s.v. function such that $\beta(j) \rightarrow 1$ as $j \rightarrow \infty$. Consequently one **gets** $N_j \sim \log \log n_j \sim \log j$. One can find a J_2 such that for all $j \geqslant J_1$

$$
P\left(A_{m_j} \leq c_5 \,\psi_{m_{j-1}}\right) \leq j^{-\theta}
$$

Now $\theta > 1$, implies that $\sum_{j=1}^{\infty} P(A_{m_j} \leqslant c_5 \psi_{m_{j-1}}) < \infty$. By Borel-Cantelli **lemma one gets**

$$
P(A_{m_j} \leqslant c_5 \psi_{m_{j-1}} \text{ i.o.}) = 0. \tag{13}
$$

Notice that for $m_{j-1} \leqslant n \leqslant m_j$, $j = 1, 2, ..., A_n/\psi_n \leqslant A_{m_j}/\psi_n$. **Hence (13) imphes that**

$$
P(A_n \leqslant c_5 \psi_n \text{ i.o.}) = 0 \qquad \qquad \dots \quad (14)
$$

To prove the other half of the theorem we proceed as follows. Let t_j be an integer sequence such that $n_j = \frac{2t_j}{\log \log t_j}, j \geq 1$ and let $M_j = \frac{t_j}{n_j}$ Define $A_{n_j}(k) = \max_{1 \leq i \leq n_j} |S_{kn_j+i}-S_{kn_j}|$, $k = 0, 1, 2, ..., M$.

For any $\epsilon > 0$ and $\lambda > 0$, let

$$
E_{k} = \left\{ |S_{(k+1)n_j}| \leqslant \varepsilon \psi_{t_j}, A_{n_j}(k) \leqslant \lambda \psi_{t_j} \right\}, k = 0, 1, 2, ..., M_j.
$$

Then we have

$$
\bigcap_{k=0}^{M_j} E_k \subset \left\{ A_{t_j} \leqslant (\epsilon + \lambda) \psi_{t_j} \right\} \qquad \qquad \dots \quad (15)
$$

A 2-11

Using (15) we now obtain a lower bound for $P(A_{t_i} \leq (\varepsilon + \lambda)\psi_{t_i})$. Using the **technique of iterated conditional expectations as in Jain and Pruitt (1973), one gets for all**

$$
\varepsilon > \varepsilon_1, \lambda > \lambda_1 \text{ and } j \geqslant J_2
$$

$$
P(A_{t_j} \leqslant (\varepsilon + \lambda)\psi_{t_j}) \geqslant (1/4)^{(M_j + 1)}.
$$
 (16)

Observe that $M_j \sim (\text{loglog } n_j)/2$. Hence for a $\beta > 1$, but sufficiently close to one, there exists a J_3 such that for all $j \geqslant J_3$, $\varepsilon \geqslant \varepsilon_1$ and $\lambda \geqslant \lambda_1$,

$$
P\left(A_{t_j} \leqslant (\epsilon + \lambda)\psi_{t_j}\right) \geqslant (1/4)^{(\beta \log \log n_j)/2} = (\log n_j)^{-\delta} \qquad \qquad \dots \quad (17)
$$

where $\delta = (\beta \log 4)/2$. Note that $\delta < 1$. Choose $\gamma \epsilon (1, \delta^{-1})$.

Define $q_j = t_{j+1}$ and observe the relation

$$
A_{q_j} \leq A_{q_{j-1}} + \max_{q_{j-1} \leq i \leq q_j} |S_i - S_{q_{j-1}}|.
$$
 (18)

Using (17) and proceeding as in Jain and Pruitt (1973) one can show that for some J_4 and $c_7 > \epsilon_1 + \lambda_1$,

$$
P\Big(\max_{q_{j-1} < i < q_j} |S_i - S_{q_{j-1}}| \leq c_\tau \psi_{q_j}\Big) \geq \Big(\log n_{[j^{\tau}]}\Big)^{-\delta}
$$

whenever $j \geqslant J_4$.

From (12), there exists a J_5 such that for all $j \geq J_5$,

$$
P\Big(\max_{q_{j-1}\leq i\leq q_j}|S_i-S_{q_{j-1}}|\leqslant c_q\psi_{q_j}\Big)\geqslant c_8\text{j}j^{r\delta}(\log r)^{\delta}\qquad\qquad\ldots\quad(19)
$$

Since $1 < \gamma < \delta^{-1}$ (i.e., $\gamma \delta < 1$), we find that $\sum_{i=1}^{\infty} j^{-i\delta} = \infty$

By appealing to Borel-Cantelli lemma, (19) implies that

$$
P\Big(\max_{q_{j-1} < i < q_j} |S_i - S_{q_{j-1}}| \leqslant c_\gamma \psi_{q_j} \text{i.o.}\Big) = 1 \qquad \qquad \dots \quad (20)
$$

We now show that for any constant $c_9 > 0$,

$$
P\Big(A_{q_{j-1}} \geqslant c_9 \psi_{q_j} \text{i.o.}\Big) = 0 \qquad \qquad \dots \quad (21)
$$

Since F is symmetric about zero, we have by weak symmetrization inequality

$$
P\Big(A_{q_{j-1}} \geqslant c_9\psi_{q_j}\Big) \leqslant 2P\Big(\,|\,S_{q_{j-1}}|\geqslant c_9\psi_{q_j}/2\Big).
$$

Let $z_j = c_9 \psi_{q_j}/2B_{q_{j-1}}$ and observe that $z_j \to \infty$ as $j \to \infty$. Then we have

$$
P\left(A_{q_{j-1}} \geqslant c_9 \psi_{q_j}\right) \leqslant 2P\left(|S_{q_{i-1}}| \geqslant z_j B_{q_{j-1}}\right) \qquad \qquad \dots \quad (22)
$$

From Heyde, (1967) one gets that

 $\Delta \sim 10$

$$
\limsup_{j\to\infty}\frac{P\left(|S_{q_{j-1}}|\geqslant z_jB_{q_{j-1}}\right)}{q_{j-1}P\left(|X_1|\geqslant z_jB_{q_{j-1}}\right)}<\infty.
$$

By Theorem 1 and by some elementary properties of a s.v. function, we get

$$
P(|S_{q_{j-1}}| \geqslant z_j B_{q_{j-1}}| \leqslant c_{10} z_j^{-(a-\epsilon)}.
$$

Observing that $\sum_{j=1}^{\infty} z_j^{-(\alpha-\epsilon)} < \infty$, by Borel-Cantelli lemma and by (22) one gets

$$
P\Big(A_{q_{j-1}} \geqslant c_9\psi_{q_j}\,\mathrm{i.o.}\Big) = 0\qquad\qquad\qquad\ldots\quad(23)
$$

and the proof of the theorem is complete.

Remark : As in Jain and Pruitt (1973) the exact value of lim inf A_n **is not available here also.**

Acknowledgement. The authors thank the referee for his valuable comments.

References

- **Chover J. (1966) : A law of the iterated logarithm for stable summands. Proc. Amer. math. Soc, 17, 441-443.**
- **DRASIN, D. and SENETA E. (1986):** A generalization of slowly varying functions. Proc. Amer. **Math. Soc, 96, 470-472.**
- **FELLER, W. (1946) :** A limit theorem for random variables with infinite moments. Amer. J. Math., **68, 257-262.**

FELLER, W. (1966): An Introduction to Probability Theory and its Applications, 2, Wiley.

- GNEDENKO, B. V. and KOLMOGOROV, A. N. (1954): Limit Distribution of Sums of Independent **Random Variables, Addison-Wesley, Cambridge, Mass.**
- **Heyde, C. C. (1967) : On large deviation problems for sums of random variables which are not attracted to the normal law. Ann. Math. Stat., 38, 1575-1578.**
	- JAIN, N. C. and PRUITT, W. E. (1973): Maximum of partial sums of independent random vari**ables, Z. Wahrscheinlichkeits-theorie Verw. Gab., 27, 141-151.**
	- KRUGLOV, V. M. (1972): On the extension of the class of stable distributions. Theor. Probab. **Appln., 17, 685-694.**
	- SENETA, E. (1976): Regularly varying functions. Lecture notes in Mathematics: No. 508, **Springer, Berlin.**

Paper received : June, 1986. Revised : April, 1988.