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Sankhy? : The Indian Journal of Statistics 

1989, Volume 51, Series A, Pt. 2, pp. 196-204. 

TAIL BEHAVIOUR OF DISTRIBUTIONS IN THE DOMAIN 
OF PARTIAL ATTRACTION AND SOME RELATED 

ITERATED LOGARITHM LAWS 

By G. DIVANJI* and R. VASUDEVA 

University of Mysore, India 

SUMMARY. Let F be a distribution function and let (Sn) be a partial sum sequence of 

i.i.d. random variables with the common distribution F. F is said to be in the domain of partial 

attraction iff there exists an integer sequence (nj) such that (Sn,), properly normalized, converges 

to a non degenerate random variable. Under certain assumptions on the sequence (nj) we 

characterize the tail of F and obtain iterated logarithm laws for (Sn) and ( max !?&!). 

1. Introduction 

Let (Xn) be a sequence of independent identically distributed (i.i.d.) 
random variables (r.v.) defined over a common probability space (?Q, &, P) 

n 
and let Sn 

? 2 Xj, n > 1. Let F denote the distribution function (d.f.) 
i=i 

of Xv Let (nj) be an integer subsequence and let 
(an ) and 

(Bn ) be sequences 

of constants (B? ?? oo as j -? oo). Set ZM 
= 

B~1SM ?aM . When (nA coin 
nj 
j i 

nj nj 
n. 

nj 
x J' 

cides with the sequence of natural numbers (n), for proper selection of (an) 
and (Bn), if (Zn) converges weakly, then it is wellknown that the limit law 

is stable (or possibly degenerate). For some subsequence (nj) and for proper 

selection of (a ) and 
(B% ), 

if 
(Zn ) converges weakly, then the limit law is 

j 3 1 

known to be an infinitely divisible law (see, ex. Gnedenko and Kolmo 

gorov (1954)). Kruglov (1972) considered sequences (nj) satisfying (i) nj < 

nj+i> J 5* 15 and (ii) lim Uj+1jnj 
= 

r( > 1), and characterized the class It 
j? or 

of all infinitely divisible distributions which are limit laws of 
(Zn ). He 

found that the members of U have many properties of stable laws. 

It may be noted that the class of all stable laws is included in ??. In 

particular, if lim nj+Juj 
= 1, Kruglov (1972) established that (i) the 

Research supported by University of Mysore Junior Research Fellowship and 

C.S.I.R.S.R. Fellowship. 
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ITERATED LOGARITHM LAWS 197 

limit law of 
(Zn ) is a stable law and (ii) the sequence (Zn), properly norma 

lized, will itself converge to the same stable law. Consequently, the sub 

sequences of our interest under Kruglov's setup are those subsequences (uj) 
with Km Uj+1fnj 

= r, r > 1. Here Kruglov has characterized the limit 

distribution G as either normal or as an infinitely divisible distribution with 

the characteristic function <?) of the form 

log ci(0 = iyt+ J (e?*-l- ^ ) dH(x), 

where y is some real constant and If is a spectral function with H(?x) 
= x~* dx (log x), x > 0, H(x) 

= ?x-* 62(log x), x > 0, 0 < a < 2 and 6X 
and d2 are periodic functions with a common period such that for all x > 0 

and h > 0, e*h di(x?h)?e-*h dt(x+h) > 0, c, < d((x) < d?, a: > 0, * = 1, 2, 

cx+c2 > 0. 

When the d.f. G e <U is non-normal we denote it by Ga, 0 < a < 2. 

Throughout this paper, J7 is in the domain of partial attraction of Ga means 

that the sequence (Zn) converges in distribution to Ga, where (n$) satisfies 

the conditions n$ < nj+x, j 
= 1,2, ... and lim n$+x\n? 

= 
r( > 1). This is 

denoted by F e DP (a), 0 < a < 2. 

In the next section we obtain an asymptotic expression for the tail of F 

when F e.DP(oc). Assuming that an. 
= 0, in 

Zn, j > 1, we establish a law 

of the iterated logarithm (l.i.l.) for (Sn), which is similar to Chover (1966). 
Under a further assumption that Xx is symmetric about zero, we prove a l.i.l. 

for An 
= max | 8j? \, n > 1, which is of the form of Theorem 1, Jain and 

Pruitt (1973). Even though the weak convergence is available only over the 

subsequence (nj), the iterated logarithm results have been obtained for the 

sequences (Sn) and (An). 

For any u > 0, by [u] we mean the greatest integer < u. i.o. and a.s. 

stand for infinitely often and almost surely. Throughout the paper, c, s, 

J (integer) and N (integer), with or without a suffix, stand for positive 
constants. 

2. Tail behaviour of f 

Theorem 1 : Let F eDP(oc), 0 < a < 2. Then there exists a slowly 

varying function L and a function d bounded in between two positive numbers 

bv b2, 0 < bx < b2 < oo, such that 

Km x*(l-F(x)+F(-x) = x 
x -> ce L(x) d(x) 
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198 G. DIVANJI AND R. VASUDEVA 

Proof : Prom the fact that F e DP(a), by Gnedenko, and Kolmogorov, 

(1954) we have for any y > 0, 

lim njF(-B y) = y~*Qx (log y) 

and lim nj(F(Bny)~\) 
= 

-y-ad2(log y). 

For x > 0, which is large, choose an integer j and a fixed positive number y 

such that Bny < x < #w .^. Define T(a) = l-?^+?X-tf) and <f>k(y) 

= 
~?^^^tT^^y^>^' 

We have for any k>0, 
0x{logky)+d2(logky) 

J J 

T^my) T(x) ^y) . 

!T(fcBn/y) 
< r(te) < 

WsB^y) 
so that 

n/ fh+iT(Bnj+1y) T{x) +i ?,r(^) 
n,+1 n}T(kBnjy) 

^ 
2?(fce) 

^ 
n, 

" 

nj+1T(kBn.+iy) 
' 

Using the fact that nj+1jfij 
? r as j ?? oo, as x -> oo (j ?? oo), one gets 

r < 
lT^ Tm < lT-*sy TW) < r?Uyy 

Since c\ < 6i(x) < d%, x > 0, i == 1, 2, we have 

??c-1 < Km inf ^tt^x < lim sup ; 
- 

< ?% 
*_><* T(kx) x-> T(kx) 

^ 

where c = 
^(?i+d2)/(ci+c2) 

Now set T(x) 
= #~ #(#). Then we have the relation 

0-1 
<*?? ^1) 

< *"? m <c - (1) 

By Drasin, and Seneta, (1986) one now finds that 

lim Tl A., . = 1, where L is slowly varying (s.v) at oo and 6 is such that 

both #(#) and l/#(#) are bounded for large x. Hence we have T(x) 
~ x~a 

L(x) 6(x) and the proof of the theorem is complete. 

This content downloaded from 14.139.155.135 on Thu, 8 Aug 2013 06:58:02 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ITERATED logarithm laws 199 

3. Iterated logarithm laws 

In this section we obtain two l.i.l. results. For Theorem 2 below we 

assume that a? = 0 in Z? . When a < 1, am can always be chosen to be 

zero. When a > 1, an, becomes UjEXx. Hence one can make an. 
= 0 by 

shifting EXX to zero. Consequently the condition an, 
= 0 is no condition 

at all when oc ̂  1, 0 < a < 2. However when a = 1, this assumption res 

tricts only to symmetric d.f.s F eDP(l). For Theorem 3 below we further 

assume that the d.f. F is symmetric about zero. We first prove a lemma 

needed in presenting our main results. 

Lemma : Let Bn be the smallest root of the equation : nT(x) 
= 1. Then 

Bn ^ n1/a l(n)rj(n), where I is a function s.v. at oo and r? is a function such that 

both 7j and l\r\ are bounded. 

Proof : For x large, we have by Theorem 1, 

T(x) 
~ 

x-*L(x) 6 (x), bx < d(x) < 62. 

Hence there exists a X0 such that for all x > X0, 

bxx~*L(x) < T(x) < b2x~*L(x) ... (2) 

Let BXn and B2n be respectively the smallest roots of nbxx~aL(x) 
= 1 and 

nb.,x~aL(x) 
= 1. Then by the properties of regularly varying functions, 

one gets Bin = 
b^n1!2^) i = 1, 2, where I is s.v. at oo. Relation (2) im 

plies that BXn < Bn < B2n. Hence Bn 
= nv*l (n)r?(n) where r?(ri) is bounded 

between b\la and b\lm. 

Theorem 2 : Let FeDP(a), 0 < a < 2. yA?w 

P 
(lim Sup\B~lSn\ 

Uloglogn = eil?\ = i ... (3) 

Proo/ : In order to establish the theorem, equivalently we show that 

for any s with 0 < s < 1, 

P( | Sn | > tfjlog ^u+^.o.) = 0 ... (4) 
and 

WJ >5?(logn) 
* 

;.*.) = ! ... (5) 

By Feller (1946) and by Kruglov (1972), (4) and (5) hold once we show 
that 

P( | XJ > 2?Jlog n)< w t.o.) = 0 ... (6) 
and 

P(\Xn\> Z??(log n)?->* i.o.) =1 ... (7) 
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200 G. DIVANJI AND R. VASUDEVA 

From Theorem 1 above, one can find an integer Nx such that for all n > Nv 

P{\*n\> BnQog n)W) < c,L(Bn (log n)W)?Bl (log n)?+?> 

Using the fact that L((log n).w*Bn) = 0 ((log n)^ L(Bn)) and L(J3n) 
?-* (?)=0 (1) which follows by the properties of s.v functions (see Feller, (1966) 
or Seneta (1976)) one can show that 

lim sup ?(log ?)<i+?/? P(\XJ > Bn(log nyw) < oo. 

oo 

Consequently, 2 P(\Xn\ > Bn(log n){1+s)/") < oo, which in turn establishes 

(6) by Borel-Cantelli lemma. 

Again by Theorem 1, there exists a N2 such that for all n^ N2, 

P(\Xn\> BJlog w)U-*>/?) > c4L(?Jlog n^-^/JSS (log n)*-*. 

By arguments similar to the above, one can show that 

lim ?(log ?)(1-"a) P(\Xn\ > Bn(log nY1-*?*) 
= oo, ... (8) 

n ? oo 

Now (7) follows from (8) again by appealing to Borel-Cantelli lemma. 

Theorem 3 : Let F be a d.f. symmetric about zero and let F e DP(oc), 
0 < a < 2. Let \?rn 

= 
2?[n/iog log n], n > 3. Then there exists a finite positive 

constant c such that 

Urn inf ft?1 An 
= c a.s. 

Proof : We now establish that for some constants c5 and c6, 0 < C5 

< c6 < 00, 

c5 < lim inf i?r~l An < c6 a.s. ... (9) n ?> 00 

In view of Hewitt-Savage zero-one law (9) implies that lim inf ^1An is 

a.s. a finite positive constant. The proof is on the lines of Jain and Pruitt 

(1973.) First we prove that 

P(f^An<c^i.o.) 
= 0 ... (10) 

Since F eDP(oc), we know that for all xe(?co, 00), 

lim P(Sn <??,) 
= ?.(*) ... (11) 

j ?> ? j j 

where nj < nj+1,j 
= 1, 2, ... and n/+1/n/-> r as j~> 00. 
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iterated logarithm laws 201 

Let mj be an integer sequence such that nj 
= 

[wty/log log mj]. Set Nj 
= 

[mjjnj], j 
= 1, 2, ... Then for any c5 > 0, 

K <c* SJ c 
? ( ' s-V,?,1 

<2 c* * J 
Therefore ?, 

Now proceeding as in Jain and Pruitt (1973) one gets for all j ^ Jx, 

P(^<c6^J<e 
^ 

where 6 > 1 is some constant. By Kruglov (1972) we have 

^ = ^ ... (12) 

where ? is a s.v. function such that /?(j)-> 1 as j?> oo. Consequently one 

gets Nj 
~ 

loglog nj 
~ 

log j. One can find a J2 such that for all j > J2, 

Now d > 1, implies that 2 P[Am < c5ifrm ) < oo. By Borel-Cantelli 

lemma one gets 

P(Amj<c,i?rmjii.o.yj=0. 

... (13) 

Notice that for m}_x < n < mj, j 
= 1, 2, ..., 4J^n < 

^mJ^m.^ 
Hence 

(13) imphes that 

P(^<c5^i.o.) 
= 0 ... (14) 

To prove the other half of the theorem we proceed as follows. Let tj 

be an integer sequence such that nj 
= 

[2fy/loglog tj], j ^ 1 and let Mj 
= 

\tj\nj] 

Define A (k) 
= max | Sk +i-S \, k = 0, 1, 2,.... M}. J 

l<i<nj 
J J 

For any s > 0 and ? > 0, let 

E* = 
{ 

I -W^l < s^' Anp) < 
A^| 

* = ?. L 2> -' ^i 

Then we have 

My 

nftcl^<(t+A)^| 
... as) 

A 2-11 
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202 G. DIVANJI AND R. VASX7DEVA 

Using (15) we now obtain a lower bound for P(A%m < (s+A)^.y Using the 

technique of iterated conditional expectations as in Jain and Pruitt (1973), 
one gets for all 

e > ev ? > Ax and j > J2 

P(Atj < (e+A)^.) > (l/4)(^+1). ... (16) 

Observe that ilf? 
~ 

(loglog nf)\2. Hence for a ? > 1, but sufficiently close 

to one, there exists a J3 such that for all j > J3, s > ex and A > A1? 

P(^ 
< 

(s+A)^.) 
> (1/4^ 

logn>)/2 = 
(log n,)-* ... (17) 

where S = (/? log 4)/2. Note that 5 < 1. Choose y e(l, tf-1). 

Define <# 
= ? y and observe the relation 

?"<?-\,^l? |S,-v.'- 
- (18) 

Using (17) and proceeding as in Jain and Pruitt (1973) one can show that for 

some J4 and c7 > ^-fA^ 

pLss* 
' *"*?-* '< ^> (log vT 

whenever j > J4. 

From (12), there exists a J5 such that for all j > J5, 

Pi max \Si-8 | < c,f) > c8/j*>(log r)a ... (19) 

Since 1 < 7 < S-1 (i.e., ya < 1), we find that E j~v? 
= oo. 

By appealing to Borel-Cantelli lemma, (19) implies that 

P( 
max \Si~S | < c^ i.o.) 

= 1 ... (20) 

We now show that for any constant c9 > 0, 

p(A9._i 
> 

c9^.i.o.) 
= 0 ... (21) 
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ITERATED LOGARITHM LAWS 203 

Since F is symmetric about zero, we have by weak symmetrization inequality 

i>Krl>c#9j)<2P(|^_i|>c#9./2). 

Let Zj 
? 

c9ijr /2JB and observe that zj ?> oo as j ?> oo. Then we have 

P( Vl > C 
A") < 2P( I ?f? I > *V, i ~ (22) 

From Heyde, (1967) one gets that 

,. *(l**? I >??*-.) 

By Theorem 1 and by some elementary properties of a s.v. function, 

we get 

Observing that 2 z~.{a-e) < oo, by Borel-Cantelli lemma and by (22) one gets 

pK-i>c^ii-?-)=o 
- (23) 

and the proof of the theorem is complete. 

Remark : As in Jain and Pruitt (1973) the exact value of lim inf An 
is not available here also. 

Acknowledgement. The authors thank the referee for his valuable 

comments. 
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