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Polarization parameters of a spin-one system: Bounds and geometrical representation
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A new geometrical representation for the state of polarization of spin-one particles is suggested
which in the limit of mass zero reduces to the well-known Poincare sphere representation for light.
A careful consideration of the bounds on the polarization parameters of spin-one resonances pro-
duced in parity-conserving processes is also discussed as yet another particular case.

I. INTRODUCTION

The Poincare sphere representation' for the polariza-
tion of light is an old and well-known concept, whose use-
fulness even today is attested to by several recent applica-
tions. ' Considering that photons are mass zero spin-one
particles, it is interesting to examine whether a suitable
geometrical representation for the polarization state of

I

massive spin-one particles could be given such that it
reduces to the Poincare representation in the case of
massless particles. Here we show that it is indeed possi-
ble.

Following the Madison convention (which is identical
with the earlier usage by Ramachandran and Umerjee ),
the density matrix p for massive spin-one particles is
given explicitly by
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in terms of the spherical tensor parameters t" of rank
k =1,2 and q = —k to +k. The rows and columns are
labeled by the states

~ l, m ); m =+1,0, —1. The general
structure (1) for p assumes simplified forms for special-
ized choices of the Cartesian axes in the real three-
dimensional space. (1) If we choose the z axis to be along
the direction of vector polarization, then t+& =0; such a
frame may be referred to as a Lakin frame. Moreover,
by a suitable rotation about the z axis one can render
Im(ti)=0 and Re(t, )~0. We shall refer to the Lakin
frame in which these two further conditions are satisfied
as the special Lakin frame (SLF). This is a convenient
frame to work with as long as the vector polarization is
nonzero. (2) Observing that the parameters t represent-
ing the tensor polarization are effectively equivalent to a
real symmetric second-rank Cartesian tensor '

p &=2Q &, which defines a set of the principal axes; one
can choose the Cartesian axes to be along the principal
axes. Such a frame has been referred to as a principal
axis of alignment frame (PAAF), where (t+, )

=Im(t2 )"=0, since a polarized spin system with a zero
vector polarization, but with a nonzero tensor polariza-
tion, is usually referred to as an aligned system. The
three eigenstates of any aligned system can conveniently

1+p i p2 ip3

p2+lp3 1 —p, (2)

where we have put Trp=1 and labeled the rows and
columns by the plane-polarized states along x and y

I

be looked upon as the ~jm ) state with m =0, with the
axis of quantization chosen, respectively, along the X, Y,
Z directions defined by the principal axes. The states
were therefore denoted by ~x„), ~y„), and ~z„) earlier.
Moreover, if A, ; i = 1,2, 3 denote the eigenvalues of p for
an aligned system, it follows that if any two eigenvalues
are equal and the two corresponding eigenstates are
designated as ~x„) and ~y„), the system is "oriented"
with the zz axis being the axis of orientation. If all the I,;
are different, the aligned system is nonoriented and is
characterized by two independent axes in the three-
dimensional configuration space.

In view of the above, it is advantageous for our pur-
poses here to define a special frame (SF) which is identical
with SLF for systems with nonzero vector polarization
and coincides with a PAAF for aligned systems.

The density matrix description for light, i.e., massless
spin-one particles is well known' '" and is given by
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directions, the direction of propagation is along z axis.
The parameters p&, pz, and p3 denote the well-known
Stokes's parameters choosing p, , pz, p3 along the
three axes of a Cartesian frame, the state of polarization
is represented by a vector p. For pure states,
Tr(p )=(Trp) =1, which gives p, +pz+p3=1 so that
the tip of the vector p with components p&, pz, and p3 lies
on the surface of a unit sphere which is the well-known
Poincare sphere. ' For mixture states Tr(p ) & 1, and con-
sequently the state of partially polarized light may be
represented by a point within the sphere.

Expressing the density matrix p given by (2) in the
3X3 form with rows and columns labeled by ~1, +1),
~1,0), and ~1, —1) states, we have

t2= 1

v'2 ' (Se)

1+ 3/2r,'+ r,' & 0,
2 '

1 —&Zt' &0

1 —&3/2r '+ r' & 01
0 ~ 0—

2

(6a)

(6b)

(6c)

Irrespective of whether a spin-one system is massive or
massless, the condition that the eigenvalues of p must be
non-negative implies that all its principal minors should
also be nonnegative. ' From this result of the matrix
theory, ' the positive semidefiniteness property of the
density matrix leads to

1
P

1 p3

0 0

p] +lpp 0

Pi 'Pz

0
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Here the m =+1 states (which are the only ones available
for physical photons) are defined through

(4)
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(6

where e„,e~ denote the unit vectors along the x and y
directions. If the electromagnetic wave is represented by

(1 i/2t0 )—
2 '

2

z
exp —2+i vt —— —3 Re(t i ) 1+ —to++3Re(tz) &0, (6g)

2
'

the 1, + 1 ) and
~ 1, —1 ) states defined above correspond,

respectively, to the conventional' left and right circular
polarizations.

which imply together

(7a)

II. GEOMETRICAL REPRESENTATION

To arrive at a geometrical representation for the state
of polarization of massive spin-one particles, let us com-
pare Eqs. (1) and (3). We notice that

t+] =t+] =01 2

1+ t~o
2

2 '
2

—&3/2 & to «3/2,
0 (r,' )'+ 2[Re(r', )]'+2[1m(r', ) ]'

(7b)

(7c)

for light. In other words, the choice of the z axis to be
the direction of propagation (and the absence of the lon-
gitudinal state of polarization) immediately implies that
we are working in a SLF. The comparison further leads
to the identification

2—Re(t~)=p, ,
3

0 [Re(ti )] —1+&3/2to+ —to (1 &2to), —
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with the positive root taken in (7g) since, by definition,
Re(t, ) ~ 0 in SF.

If we define parameters p„p2, and p3 even for massive
spin-one particles using the same equations (5b) —(5d), it is
clear that

2

p =p +p +p ~R =(—') 1+ —t
12'

Moreover, any arbitrary spin state of massive spin-one
particles is completely specified in SF if we give Re(t f ) in
addition to p „p2,p3, and to.

Let us, therefore, represent the possible values of
Re(t, ) ranging from 0 to Q on a real line represented
horizontally as in Fig. 1. We then draw a sphere of ra-
dius R such that it touches the horizontal line at the
specified value of the parameter Re(t, ). choosing a
Cartesian frame OX, OY, OZ (coinciding with SF), and
with the center of the sphere as the origin, we draw a vec-
tor p with components p„p2, and p3. The tip of this
vector naturally lies on or within the sphere in view of
(8). It is clear that the figure geometrically represents any
arbitrary state of polarization of the spin-one particles ir-
respective of their mass. It may be noted in passing that
the directions OX, OF, and OZ (along which p „p2, and p3
are marked ofi) specify the SF in the configuration space.
However, p„p2, and p3 are related to Re(t2), Im(t2),
and t 0, which, together, do not transform under rotations
like the Cartesian components of a vector. Likewise, it
should be remembered that Re(t t ), which is represented
along a line, transforms as a component of an irreducible
tensor of rank 2 under rotations and thus it is neither a
vector nor a scalar in the configuration space.

In the limit of mass zero particles it is clear from (5a)
that the sphere will always touch the line at Re(t, )=0
and consequently the line becomes redundant. Also, Eqs.
(5e) and (8) imply that the radius R of the sphere is fixed

.and equals 1. Thus, the vector p on or within the unit
sphere, by itself, completely represents any arbitrary state
of polarization of the zero mass particle.

The geometrical representation outlined above, when
specialized to mass zero particles, leads. to the following
additional features for the conventional Poincare sphere.
It is capable of representing any arbitrary state of partial-
ly polarized light; moreover, the z axis gives the direction
of propagation in space, and the two states of plane po-
larization which are chosen as the basis states are along X
and Y.

III. SPECIAL CASKS

We now discuss some special cases of interest and
determine the corresponding restricted domains of the
state of polarization in our geometrical representation.

A. Case 1: Purely vector polarized system

The only nonzero parameter in SF of such a spin sys-
tem is to. Consequently, the vector p lies along p3 or z
axis on or inside a sphere of radius R =—', with the sphere
touching the horizontal line at Re(t, ) =0.

B. Case 2: Aligned system

Since the only nonzero parameters in this case are to
and Re( t 2 ), aligned systems are represented by the vector
p lying along p, or the x axis with the sphere touching
the horizontal line at Re(t, ) =0.

C. Case 3: Oriented systems

If the system is aligned and oriented and the principal
axes are properly designated such that ~x„) and ~y„)
represent the eigenstates with a common eigenvalue,
Re(tz) is also zero. Consequently, such a state of polar-
ization is represented by the center of the sphere which
touches the horizontal line at Re(t f ) =0.

However, an oriented system can also possess nonzero
vector polarization. In that case the parameters t+„ t+&,
and t+2 will all be zero in SF, and consequently the spin
state of such an oriented system is specified in SF by to
and to only. From this it follows that the polarization
states in this case are represented by points on p3 or the z
axis on or inside the sphere which touches the line at
Re(t, ) =0.

D. Case 4: Pure states

If the density matrix p represents a pure state then it
should be idempotent, i.e.,

p p

and all its principal minors of dimension greater than 1

will vanish. Thus, we have

0 R(t ) (to) +2[Re(t2 )] +2[Im(t2 )] =—1+ —to
2 2 2 1 2

2

FIG. 1. Geometrical representation of the state of polariza-
tion of a spin-one system. (10a)
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[Re(t1)] =—1+&3/2t0+ t0 (1 v'—2t0), (10b)

[Re(t, )] =— 1 &—3/2t0+ —t0 (1 &—2t0 ), (10c)

=1
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1+ —to
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(15)

Re(t', )' 1+ t0'+&3Re(t2) =0 . (1od)
we readily see that t0= —&2 and Re(t2)=0 correspond
simply to the state l1,0), while

t0=1/+2 and Re(t2)=+&3/2
From Eqs. (10b) and (10c) we have

Re(t ) =—1+&3/2t'+ —t (1 &2t —
)0 ~2 0 0

1 —&3/2t'+ t' (1—v2t2)0 ~2 0 0

correspond, respectively, to the pure states

[ll, +» —ll, —»]
v'2

and

i[ll, + I &+l1, —»]
lya

(16)

(17)

For this value of t0 we see from (10b) and 10(c) that
Re(t, ) =0 and, moreover, Eq. (10a) becomes

(t,')'+2[Re(t', )]'+2[Im(t,')]'=-', , (12)

which leads to

=P i+Pa+I'3 (13)

Thus, the pure states in this case correspond to points on
the surface of the unit sphere which touches the line at
Re(t, ) =0.

The density matrix p in this case has the explicit form

1
p

', +&3/2t0 0— &3t2 2

(14)

which implies either t0=1/&2 or t0=0. We therefore
have two categories of pure states: (a)

t2= 1
0

Thus, the only pure states which are characterized by
t0=0 are the three eigenstates designated as lx„), ly„),
and lz„) in Ref. 5. lx„) and ly~ ) are represented by
the diametrically opposite points on the unit sphere along
p, or the x axis, while in the case of the state lz~ ), the
sphere reduces to a point. In all the cases Re(t, ) =0, the
point at which the sphere touches the line.

Thus, all pure states are characterized by Re( t, ) =0 in
our special frame and are either represented by points on
a unit sphere or by a sphere with radius zero. The former
are linear combinations of

l 1,+I ) states, while the latter
corresponds uniquely to the l1,0) state. The latter situa-
tion does not arise in the case of massless particles for
which the longitudinal state does not exist and the unit
sphere is, in fact, the Poincare sphere where diametrically
opposite points are well known to represent mutually or-
thogonal elliptically polarized states.

Even in the case of massive spin-one particles such a
statement can be made. Consider two orthogonal pure
states lp, ) and i/2) with

&3t' 0 3
2

3
0

l 1(t, )=, [a l 1, + I ) + ib
l 1, —1 ) ],

(a 2+ b 2 )1/2
(18)

which immediately shows that the pure state must be a
linear combination of the

l 1, +1 ) states. It is to be noted,
in particular, that if t+2=0, then we have by virtue of
(12) that t0=+&3/2, and these two cases correspond
simply to the pure states l 1,+1), and are represented, re-
spectively, by the south and north poles on the unit
sphere in Fig. 1. (b)

t,'=0 .

, „,[ibll, +»+all, —»].
(a 2+ b 2)1/2

Then the corresponding density matrices take the form

a 0 —iab
1

pi = 0 0 0
a +b

iab 0 b

(20)

In this case obviously the system is aligned and conse-
quently we consider p in PAAF, where t+, =0 and
Im(t2)=0. Equations (10b) and (10c) imply that either
t0=1/&2 or —&2. Equation (10a) then shows that
Re( t 2 ) can only assume values +&3/2 when t 0

= I /&2
and zero when t0= —V 2. Looking at the explicit form
of the density matrix

b2 0 +E'ab
1

P2 0 0 0
—iab 0 a

Comparing (20) and (21) with (14) we see that

t,'(2) = —t,'(1), t,'(2) = —t,'(1),

(21)
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and consequently they are represented on the unit sphere
by diametrically opposite points. It is interesting to point
out that the condition p,p2=0 for orthogonal pure states
is readily satisfied by (20) and (21).

E. Case 5: Spin-one resonances produced
in parity-conserving reactions

2Trp —3Trp +1 0,
in addition to

trp ~1,

(22)

(23)

in discussing the domains of the variations of the parame-
ters t . We only have to point out that condition (23) is
really a single condition obtained by adding the three in-
dividual conditions (6d) —(6f) enunciated here and leads to

(ti ) + (t ) +2~t (24)

which is nothing but his Eq. (6a). (Note that the mul-
tipole parameters used by Minnaert are normalized
differently from the Madison convention. ) This is used to
define an ellipsoid in a three-dimensional space where the
coordinates are to, to, and ~tP. However, we have to
note that the ellipsoid cannot be a complete one since
~tP 0. Moreover, one cannot specify t+2 given It& I

alone. On the other hand, the geometrical representation
given here completely specifies t+2 since Re(tz) and
Im(tz) are represented along two orthogonal coordinate
axes. Condition (22) used by Minnaert is already implied
in our discussion through the use of (6f). Since
Re(t+, ) =0, the polarization domain in this special case
is completely specified by points which are on or within
the sphere of radius R, the sphere touching the line at
Re(t, ) =0.

Another special case of interest concerns the state of
polarization of spin-one particles or resonances produced
in parity-conserving reactions' ' where t+, =t+& =0 in
a frame of reference where the z axis is chosen to be nor-
mal to the reaction plane. This frame corresponds to our
special frame with a further condition that Re(t, )=0 on
account of parity conservation. Minnaert has used the
condition

ly, & =., I+»+a, I0&+., I

—»,
ly, & =b, I+»+b, I

—»,
lg &=d, lo&,

(25a)

(25b)

(25c)

Robson has shown that ~t,'~, ~ti ~, and ~tP have &3/2 as
their upper limit. It should be noted, however, that the
upper limit will be less than &3/2 in certain cases. For
example, when to=0, to=1/v'2 we have ~tP ( I/V2
and Re(t i ) =0. Our Eqs. (7c)—(7f) also contain this addi-
tional information and consequently provide more re-
strictive bounds. However, it should be noted that our
bounds viz. , Eqs. (6) and (7), are derived in the special
frame SF, where t', and Imt& are zero. Further, the
geometric representation suggested in this paper is valid
in general, whether the system is oriented or nonoriented.

As compared to the geometric representation suggest-
ed in Ref. 7 (which is also generally valid) the present one
is far more interesting in that it is analogous to the cele-
brated Poincare representation and contains complete in-
formation on the spin-one system. The axes OX, OY, and
OZ specify the frame SF in the configuration space and
the paraineters p„p2, and p3 (which are, purely for econ-
omy, marked along OX, OY, and OZ, but do not constitute
a vector in the configuration space) give us Ret2, Imt2,
and t o, respectively, while the radius of the sphere
specifies to and the point at which the sphere touches the
tangent line marks off Re(ti ) thereby specifying all the
nonzero t 's in the SF.

F. Case 6: Comparison with Robson's treatment

Before carrying out a comparison with Robson's'
treatment we must recall that a spin-one system can ei-
ther be oriented (i.e., monoaxial) or nonoriented (i.e.,
multiaxial —either biaxial or triaxial) in general.

The diagram 4.1 of Robson's book provides a descrip-
tion of the bounds only on to and to. If the system hap-
pens to be oriented, and further if the z axis is chosen
parallel to the axis of orientation, then to and to are the
only nonzero tensor parameters and can be related to the
statistical weights. Only in such a situation can Fig. 4.1

be considered to provide a complete description of the
bounds. By expressing p as a sum of three (not necessari-
ly unique) density matrices p,. (i =1,2, 3) corresponding
to pure unnormalized states tP; where
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