On a Continued Fraction of Ramanujan*

Chandrashekar Adiga†
Department of Studies in Mathematics, University of Mysore, Mysore-570006, India
and
Taekyun Kim‡
Institute of Science Education, Kongju National University Kongju 314-701, S. Korea

Received June 10, 2002, Accepted September 24, 2002.

Abstract

In this paper, we establish an integral representation of a q-continued fraction of Ramanujan and obtain its some explicit evaluations. We also derive its relation with the Ramanujan-Göllnitz-Gordon continued fraction .

Keywords and Phrases: continued fraction, modular equations.

1. Introduction

Srinivasa Ramanujan has made some significant contributions to the theory of continued fraction expansions. The most beautiful continued fraction

*2000 Mathematics Subject Classification: 33D15, 40A15, 11A55, 11S23, 30B70.
†e-mail: c.adigahotmail.com
‡e-mail: tkimkongju.ac.kr
expansions can be found in Chapters 12 and 16 of his second notebook [17]. The celebrated Rogers-Ramanujan continued fraction is defined by

\[R(q) := \frac{q^{1/5}}{1 + \frac{q}{1 + \frac{q^2}{1 + \frac{q^3}{1 + \cdots}}}, \quad |q| < 1. \] (1.1)

On page 46 in his ‘lost’ notebook [19], Ramanujan claims that

\[R(q) = \frac{\sqrt{5} - 1}{2} \exp \left(\frac{-1}{5} \int_q^1 \frac{(1 - t)^5(1 - t^2)^5 \cdots dt}{(1 - t^5)(1 - t^{10}) \cdots} \right), \] (1.2)

where 0 < q < 1. (1.2) was proved by G. E. Andrews [6] and for other integral representations of theta-functions, see [3]. On page 365 of his ‘lost’ notebook, Ramanujan wrote five modular equations relating \(R(q) \) with \(R(-q), R(q^2), R(q^3), R(q^4) \) and \(R(q^5) \). Ramanujan eventually found several generalizations and ramifications of (1.1) which are recorded in his ‘lost’ notebook. These and related works may be found in the papers by S. Bhargava [9], S. Bhargava and C. Adiga [10], [11], R. Y. Denis [14], [15], [16].

On page 366 of his ‘lost’ notebook, Ramanujan investigated the continued fraction

\[G(q) := \frac{q^{1/3}}{1 + \frac{q^2}{1 + \frac{q^4}{1 + \frac{q^6}{1 + \cdots}}}, \quad |q| < 1, \] (1.3)

which is known as Ramanujan’s cubic continued fraction. H. H. Chan [12] has established several modular equations relating \(G(q) \) with \(G(-q), G(q^2) \) and \(G(q^3) \). Chan and Sen-Shan Huang [13] studied the Ramanujan-Göllnitz-Gordon continued fraction

\[H(q) := \frac{q^{1/2}}{1 + q + \frac{q^2}{1 + q^3 + \frac{q^4}{1 + q^5 + \frac{q^6}{1 + \cdots}}}, \quad |q| < 1. \] (1.4)

Ramanujan computed several numerical values of \(R(q) \). One such value is

\[\frac{e^{-2\pi/5} \cdot e^{-2\pi} \cdot e^{-4\pi} \cdot e^{-6\pi}}{1 + \frac{1}{1 + 1 + 1 + \cdots}} = \frac{5 + \sqrt{5}}{2} - \frac{\sqrt{5} + 1}{2}. \]

Recently, Bruce C. Berndt and Chan [8], Chan [12], Chan and Huang [13], C. Adiga et al. [2], [4], [5] have established several new interesting evaluations of (1.1), (1.3) and (1.4).
Motivated by these works, in this paper, we study the Ramanujan continued fraction
\[
M(q) := \frac{q^{1/8}}{1 + \frac{-q}{1 + q} + \frac{-q^2}{1 + q^2} + \frac{-q^3}{1 + q^3} + \cdots}, \quad |q| < 1. \tag{1.5}
\]
In his first letter [18, p. xxviii] to Hardy, Ramanujan mentions the Roger-Ramanujan continued fraction identity and a few other identities. Further he claims that the Rogers-Ramanujan continued fraction is a particular case of
\[
\frac{1}{1 + \frac{ax}{1 + \frac{ax^2}{1 + \frac{ax^3}{1 + \cdots}}}},
\]
which itself is a particular case of
\[
\frac{1}{1 + \frac{ax}{1 + bx + \frac{ax^2}{1 + bx^2 + \frac{ax^3}{1 + bx^3 + \cdots}}}.
\] \tag{1.6}
Note that, putting \(a = -1, b = 1, x = q\) in (1.6) and then multiplying by \(q^{1/8}\) we obtain (1.5).

In Section 2, we obtain an integral representation for \(M(q)\). In Section 3, we derive a formula which helps us to obtain relations among \(M(q), M(q^2), M(q^n)\) and \(M(q^{2n})\). In Section 4, we establish some evaluations of \(M(q)\) and obtain a relationship between \(M(q)\) and \(H(q)\).

We close this introduction with some definitions which will be used in the sequel. In Chapter 16 of his second notebook [17], Ramanujan develops the theory of theta function and his theta function is defined by
\[
f(a, b) := \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2}, \quad |ab| < 1.
\]
Let
\[
\varphi(q) := f(q, q) = \frac{(-q; -q)_\infty}{(q; -q)_\infty}, \tag{1.7}
\]
and
\[
\psi(q) := f(q, q^3) = \frac{(q^2; q^2)_\infty}{(q; q^2)_\infty}, \tag{1.8}
\]
where \((a; q)_\infty = \prod_{n=0}^{\infty} (1 - aq^n).\) The product representations of these theta functions can be derived by using the Jacobi triple product identity:
\[
f(a, b) = (-a; ab)_\infty (-b; ab)_\infty (ab; ab)_\infty, \quad |ab| < 1. \tag{1.9}
\]
2. Integral Representation for $M(q)$

One of the fascinating continued fraction identity recorded by Ramanujan in his ‘lost’ notebook [19] is

$$
\frac{G(aq, \lambda q, b; q)}{G(a, \lambda, b; q)} = \frac{1}{1 + \frac{aq}{1 + \frac{bq}{1 + \frac{aq^2 + \lambda q^3}{1 + \frac{bq^2 + \lambda q^4}{1 + \cdots}}}}}
$$

(2.1)

where

$$
G(a, \lambda, b; q) = \sum_{n=0}^{\infty} \frac{q^n (-1)^n}{(q; q)_n (-bq; q)_n}
$$

and

$$(a; q)_n = (1-a)(1-aq)\cdots(1-aq^{n-1}), \quad n \geq 1.
$$

For a proof of (2.1), see S. Bhargava and C. Adiga [10]. They have also proved that

$$
\frac{G(aq, \lambda q, b; q)}{G(a, \lambda, b; q)} = 1 + \frac{aq}{1 - \frac{aq}{1 - \frac{bq}{1 - \frac{aq}{1 - \frac{bq}{1 - \cdots}}}}}
$$

(2.2)

Letting a to 0 and then setting $\lambda = -1, b = 1$ in (2.2), we deduce that

$$
\sum_{n=0}^{\infty} \frac{q^{n+1}(-1)^n}{(q^2; q^2)_n} = \frac{1}{1 + \frac{-q}{1 + \frac{-q^2}{1 + \frac{-q^3}{1 + \cdots}}}}
$$

(2.3)

Now, employing the q-binomial theorem

$$
\frac{(-b; q)_{\infty}}{(a; q)_{\infty}} = \sum_{n=0}^{\infty} \frac{(-b/a; q)_n a^n}{(q; q)_n}
$$

in (2.3) and then multiplying both sides by $q^{1/8}$, we obtain a product representation of $M(q)$, namely,

$$
q^{1/8} \frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}} = \frac{q^{1/8}}{1 + \frac{-q}{1 + \frac{-q^2}{1 + \cdots}}} = M(q).
$$

(2.4)

Suppose $0 < q < 1$. Using (2.4) we find that

$$
\log M(q) = \frac{1}{8} \log q + \sum_{n=1}^{\infty} \log(1 - q^{2n}) - \sum_{n=1}^{\infty} \log(1 - q^{2n-1}.
$$
Taking the derivative of both sides, we obtain that
\[
\frac{d}{dq} \log M(q) = \frac{1}{8q} - \sum_{n=1}^{\infty} \frac{2nq^{2n-1}}{1 - q^{2n}} + \sum_{n=1}^{\infty} \frac{(2n - 1)q^{2n-2}}{1 - q^{2n-1}}
\]
\[
= \frac{1}{8q} - \frac{1}{q} \sum_{n=1}^{\infty} \frac{(-1)^n nq^n}{1 - q^n}
\]
\[
= \frac{1}{8q} - \frac{1}{4q} \left[\varphi^2(-q)\varphi^2(-q^3) - 1 - 12q^3 \frac{\psi'(q^3)}{\psi(q^3)} \right],
\]
where we have made use of Entry 3 (iv) in Chapter 19 [7, p. 223], and logarithmic derivative of (1.8). Integrating both sides of (2.5) and then exponentiating we obtain the following theorem:

Theorem 2.1. For \(0 < q < 1 \),
\[
M(q) = \exp \int \left(\frac{1}{8q} - \frac{1}{4q} \left[\varphi^2(-q)\varphi^2(-q^3) - 1 - 12q^3 \frac{\psi'(q^3)}{\psi(q^3)} \right] \right) dq,
\]
where \(\varphi(q) \) and \(\psi(q) \) are as defined in (1.7) and (1.8).

3. Relationships among \(M(q), M(q^2), M(q^n) \) and \(M(q^{2n}) \)

Ramanujan recorded many modular equations in [7, Chapters 18-21]. To briefly define a modular equation, we first write as usual
\[
(a)_k = \frac{\Gamma(a + k)}{\Gamma(a)}.
\]
A modular equation of degree \(n \) is an equation relating \(\alpha \) and \(\beta \) which is induced by
\[
\frac{\binom{1}{r + \frac{1}{r}; 1; 1 - \alpha}}{\binom{1}{r + \frac{1}{r}; 1; 1}} = \frac{\binom{1}{r + \frac{1}{r}; 1; 1 - \beta}}{\binom{1}{r + \frac{1}{r}; 1; \beta}}
\]
where
\[
\binom{a}{b; c; x} = \sum_{k=0}^{\infty} \frac{(a)_k(b)_k}{(c)_k k!} x^k, \quad |x| < 1.
\]
Let $Z_1(r) = _2F_1\left(\frac{1}{r}, \frac{r-1}{r}; 1; \alpha\right)$ and $Z_n(r) = _2F_1\left(\frac{1}{r}, \frac{r-1}{r}; 1; \beta\right)$ where n is the degree of the modular equation. The multiplies $m(r)$ is defined by the equation

$$m(r) = \frac{Z_1(r)}{Z_n(r)}.$$

Now we prove a theorem which will be used to derive the relations among $M(q)$, $M(q^2)$, $M(q^n)$ and $M(q^{2n})$.

Theorem 3.1. If

$$q = \exp\left(-\pi \frac{_2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - \alpha\right)}{_2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; \alpha\right)}\right),$$

then

$$16 \frac{M^8(q^2)}{M^8(q)} = \alpha. \quad (3.1)$$

Proof: By (1.7) and (2.4),

$$\varphi(q)M(q^2) = q^{1/4} \frac{(-q; -q)_\infty (q^4; q^4)_\infty}{(q; -q)_\infty (q^2; q^4)_\infty} = q^{1/4} \frac{(-q^2; -q^2)_\infty (q^2; q^2)_\infty (-q^2; q^2)_\infty}{(q; q^2)_\infty (q; q^2)_\infty (-q^2; q^2)_\infty} = M^2(q). \quad (3.3)$$

We recall from [1, p. 36, Entry 25 (vii)] that

$$\varphi^4(q) - \varphi^4(-q) = 16q\varphi^4(q^2) = 16M^4(q^2). \quad (3.4)$$

Using (3.3) in (3.4), we find that

$$16M^4(q^2) = \frac{M^8(q)}{M^4(q^2)} \left(1 - \frac{\varphi^4(-q)}{\varphi^4(q)}\right). \quad (3.5)$$

From [7, Entry 5, p. 100], we know that the identity (3.1) implies that

$$\alpha = 1 - \frac{\varphi^4(-q)}{\varphi^4(q)}. \quad (3.6)$$
The claim now follows from (3.5) and (3.6). Let α and q be related by (3.1). If β has degree n over α, then from Theorem 3.1, we obtain that

$$16 \frac{M^8(q^{2n})}{M^8(q^n)} = \beta. \quad (3.7)$$

Corollary 3.1. Let $u = M(q)$, $v = M(q^2)$, $w = M(q^3)$, $x = M(q^4)$, $y = M(q^6)$ and $z = M(q^8)$. Then

(i) $y^4u^4 - w^4v^4 - 4y^3v^3wu + w^3u^3yv = 0,$

(ii) $(x^2 + 2z^2)^4(u^8 - 16v^8) - u^8(x^2 - 2z^2)^4 = 0,$

and

(iii) $[u^8 - 16v^8][w^8 - 16y^8] = [u^2w^2 - 4v^2y^2]^4. \quad (3.10)$

Proof of (i): When β has degree 3 over α, we have [7, p. 231, Entry 5 (xiii)]

$$\left(\frac{\beta}{\alpha}\right)^{1/4} - \left(\frac{\alpha}{\beta}\right)^{1/4} = 2((\alpha\beta)^{1/8} - (\alpha\beta)^{-1/8}). \quad (3.11)$$

Using (3.7) with $n = 3$ and (3.2), it can be seen that (3.11) is equivalent to

$$\left(\frac{yu}{wv}\right)^2 - \left(\frac{wv}{yu}\right)^2 = 4 \frac{vy}{wu} - \frac{wu}{vy}. \quad (3.12)$$

We obtain (3.8) upon simplifying (3.12).

Proof of (ii): When β has degree 4 over α, we have [7, Eq. (24.22), p.215]

$$\sqrt{\beta} = \left(\frac{1 - (1 - \alpha)^{1/4}}{1 + (1 - \alpha)^{1/4}}\right)^2.$$

Replacing α by $(1 - \beta)$ and β by $(1 - \alpha)$ we obtain [7, Entry 24 (v),p.216]

$$\sqrt{1 - \alpha} = \left(\frac{1 - \beta^{1/4}}{1 + \beta^{1/4}}\right)^2. \quad (3.13)$$
Using (3.7) with \(n = 4\), and (3.2) it can be seen that, (3.13) is equivalent to
\[
\left(1 - \frac{16v^8}{u^8}\right)^{1/2} = \left(\frac{x^2 - 2z^2}{x^2 + 2z^2}\right)^2.
\]
(3.14)

Squaring both sides of (3.14) and then simplifying, we obtain (3.9).

Proof of (iii): When \(\beta\) has degree 3 over \(\alpha\), we have [7, Entry 5 (ii), p. 230]
\[
(\alpha\beta)^{1/4} + (1 - \alpha)^{1/4}(1 - \beta)^{1/4} = 1.
\]
(3.15)

Using (3.7) with \(n = 3\), and (3.2) it can be seen that (3.15) is equivalent to
\[
\left(1 - \frac{16v^8}{u^8}\right)^{1/4} \left(1 - \frac{16y^8}{w^8}\right)^{1/4} = \left(1 - \frac{4v^2y^2}{w^2w^2}\right).
\]
(3.16)

Taking fourth power of both sides of (3.16) and then simplifying, we obtain (3.10).

4. Some Evaluations of \(M(q)\)

We now establish some evaluations of \(M(q)\) using Theorem 3.1. Let \(q_n := e^{-\pi\sqrt{n}}\) and let \(\alpha_n\) denote the corresponding value of \(\alpha\) in (3.1). Then by Theorem 3.1, we have
\[
\frac{M(e^{-2\pi\sqrt{n}})}{M(e^{-\pi\sqrt{n}})} = \frac{1}{\sqrt{2}}\alpha_n^{1/8}.
\]
(4.1)

It is known [7, p. 97] that \(\alpha_1 = \frac{1}{2}\), \(\alpha_2 = (\sqrt{2} - 1)^2\) and \(\alpha_4 = (\sqrt{2} - 1)^4\). Hence, using (4.1), we obtain
\[
\frac{M(e^{-2\pi})}{M(e^{-\pi})} = \left(\frac{1}{2}\right)^{5/8},
\]
(4.2)

\[
\frac{M(e^{-2\pi\sqrt{2}})}{M(e^{-\pi\sqrt{2}})} = \frac{1}{\sqrt{2}}(\sqrt{2} - 1)^{1/4}
\]
(4.3)

and
\[
\frac{M(e^{-4\pi})}{M(e^{-2\pi})} = \frac{1}{\sqrt{2}}(\sqrt{2} - 1)^{1/2}.
\]
(4.4)
Ramanujan has recorded many modular equations in his notebooks, which are very useful in the computation of class invariants and the values of theta-functions. In the literature not much attention has been paid to find the values of $\psi(q)$ and $\varphi(q)$. However, Ramanujan has recorded several values of $\varphi(q)$ and $\psi(q)$ in his notebooks. For example

$$\varphi(e^{-\pi}) = \frac{\pi^{1/4}}{\Gamma(3/4)}$$

and

$$\psi(e^{-\pi}) = 2^{-5/8}e^{\pi/8} \frac{\pi^{1/4}}{\Gamma(3/4)}.$$ \hspace{1cm} (4.6)

Using (4.6), (3.4) and (4.2), we deduce that

$$M(e^{-2\pi}) = 2^{-5/4} \frac{\pi^{1/4}}{\Gamma(3/4)}.$$ \hspace{1cm} (4.7)

Using (4.7) in (4.4), we obtain

$$M(e^{-4\pi}) = 2^{-7/4}(\sqrt{2} - 1)^{1/2} \frac{\pi^{1/4}}{\Gamma(3/4)}.$$

The Ramanujan-Weber class invariants are defined by

$$G_n := 2^{-1/4} q_n^{-1/24} (-q_n; q_n^2)_{\infty}$$

and

$$g_n := 2^{-1/4} q_n^{-1/24} (q_n; q_n^2)_{\infty}$$

where $q_n := e^{-\pi \sqrt{n}}$. Chan and Huang [13] have derived some explicit formulas for evaluating $H(e^{-\pi \sqrt{n}/2})$ in terms of Ramanujan-Weber class invariants. On the same lines one can show that

$$\frac{M(e^{-2\pi \sqrt{n}})}{M(e^{-\pi \sqrt{n}})} = \frac{1}{\sqrt{2} (\sqrt{p(p+1)} + \sqrt{p(p-1)})^{1/4}} = \frac{1}{\sqrt{2} (p_1 + \sqrt{p_1^2 + 1})^{1/4}}$$

where $p = G_n^{12}$ and $p_1 = g_n^{12}$.

Finally, we remark that $M(q)$ and $H(q)$ are related by the equation

$$H^{-1}(\sqrt{q}) - H(\sqrt{q}) = \frac{M^2(q)}{M^2(q^2)}.$$

Changing q to q^2 in the above, we obtain

$$M^2(q^4)H^2(q) + M^2(q^2)H(q) - M^2(q^4) = 0.$$

From this equation we can compute $H(q)$, using the known values of $M(q^2)$ and $M(q^4)$. On the other hand we can also compute $M(q^4)$, using the known values of $H(q)$ and $M(q^2)$.

Acknowledgements:

The authors thank the referee for his comments and suggestions. This work was supported by Korea Research Foundation Grant (KRF-2002-050-C00001).

References

